1 resultado para TWC
em Aston University Research Archive
Resumo:
'I'he accurate rreasurement of bed shear stress has been extremely difficult due to its changing values until white propunded a theory which would give constant shear along the bed of a flume. In this investigation a flume has been designed according to White's theory and by two separate methods proven to give constant shearing force along the bed. The first method applied the Hydrogen Bubble Technique to obtain accurate values of velocity thus allowing the velocity profile to be plotted and the momentum at the various test sections to be calculated. The use of a 16 mm Beaulieu movie camera allowed the exact velocity profiles created by the hydrogen bubbles to be recorded whilst an analysing projector gave the means of calculating the exact velocities at the various test sections. Simultaneously Preston's technique of measuring skin friction using Pitot tubes was applied. Twc banks of open ended water manometer were used for recording the static and velocity head pressure drop along the flume. This tvpe of manometer eliminated air locks in the tubes and was found to be sufficiently accurate. Readings of pressure and velocity were taken for various types and diameters of bed material both natural sands and glass spheres and the results tabulated. Graphs of particle Reynolds Number against bed shear stress were plotted and gave a linear relationship which dropped off at high values of Reynolds number. It was found that bed movement occurred instantaneously along the bed of the flume once critical velocity had been reached. On completion of this test a roof curve inappropriate to the bed material was used and then the test repeated. The bed shearing stress was now no longer constant and yet bed movement started instantaneously along the bed of the flume, showing that there are more parameters than critical shear stress to bed movement. It is concluded from the two separate methods applied that the bed shear stress is constant along the bed of the flume.