7 resultados para TUMOR BLOOD-FLOW
em Aston University Research Archive
Resumo:
Background. To evaluate the haemodynamic features of young healthy myopes and emmetropes, in order to ascertain the perfusion profile of human myopia and its relationship with axial length prior to reaching a degenerative state. Methods The retrobulbar, microretinal and pulsatile ocular blood flow (POBF) of one eye of each of twenty-two high myopes (N=22, mean spherical equivalent (MSE) =-5.00D), low myopes (N=22, MSE-1.00 to-4.50D) and emmetropes (N=22, MSE±0.50D) was analyzed using color Doppler Imaging, Heidelberg retinal flowmetry and ocular blood flow analyser (OBF) respectively. Intraocular pressure, axial length (AL), systemic blood pressure, and body mass index were measured. Results. When compared to the emmetropes and low myopes, the AL was greater in high myopia (p<0.0001). High myopes showed higher central retinal artery resistance index (CRA RI) (p=0.004), higher peak systolic to end diastolic velocities ratio (CRA ratio) and lower end diastolic velocity (CRA EDv) compared to low myopes (p=0.014, p=0.037). Compared to emmetropes, high myopes showed lower OBFamplitude (OBFa) (p=0.016). The POBF correlated significantly with the systolic and diastolic blood velocities of the CRA (p=0.016, p=0.036). MSE and AL correlated negatively with OBFa (p=0.03, p=0.003), OBF volume (p=0.02, p<0.001), POBF (p=0.01, p<0.001) and positively with CRA RI (p=0.007, p=0.05). Conclusion. High myopes exhibited significantly reduced pulse amplitude and CRA blood velocity, the first of which may be due to an OBF measurement artefact or real decreased ocular blood flow pulsatility. Axial length and refractive error correlated moderately with the ocular pulse and with the resistance index of the CRA, which in turn correlated amongst themselves. It is hypothesized that the compromised pulsatile and CRA haemodynamics observed in young healthy myopes is an early feature of the decrease in ocular blood flow reported in pathological myopia. Such vascular features would increase the susceptibility for vascular and age-related eye diseases.
Resumo:
PURPOSE: To evaluate the relationship between ocular perfusion pressure and color Doppler measurements in patients with glaucoma. MATERIALS AND METHODS: Twenty patients with primary open-angle glaucoma with visual field deterioration in spite of an intraocular pressure lowered below 21 mm Hg, 20 age-matched patients with glaucoma with stable visual fields, and 20 age-matched healthy controls were recruited. After a 20-minute rest in a supine position, intraocular pressure and color Doppler measurements parameters of the ophthalmic artery and the central retinal artery were obtained. Correlations between mean ocular perfusion pressure and color Doppler measurements parameters were determined. RESULTS: Patients with glaucoma showed a higher intraocular pressure (P <.0008) and a lower mean ocular perfusion pressure (P <.0045) compared with healthy subjects. Patients with deteriorating glaucoma showed a lower mean blood pressure (P =.033) and a lower end diastolic velocity in the central retinal artery (P =.0093) compared with normals. Mean ocular perfusion pressure correlated positively with end diastolic velocity in the ophthalmic artery (R = 0.66, P =.002) and central retinal artery (R = 0.74, P <.0001) and negatively with resistivity index in the ophthalmic artery (R = -0.70, P =.001) and central retinal artery (R = -0.62, P =.003) in patients with deteriorating glaucoma. Such correlations did not occur in patients with glaucoma with stable visual fields or in normal subjects. The correlations were statistically significantly different between the study groups (parallelism of regression lines in an analysis of covariance model) for end diastolic velocity (P =.001) and resistivity index (P =.0001) in the ophthalmic artery, as well as for end diastolic velocity (P =.0009) and resistivity index (P =. 001) in the central retinal artery. CONCLUSIONS: The present findings suggest that alterations in ocular blood flow regulation may contribute to the progression in glaucomatous damage.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Purpose: To investigate whether regional long-term changes in peripapillary retinal flow, measured by scanning laser Doppler flowmetry (SLDF), occur in patients with primary open angle glaucoma (POAG). Methods: 31 healthy volunteers (mean age: 65 8.3 years) and 33 POAG patients (mean age: 71.2 7.6 years) were followed up every 4 months for 16 months. Using SLDF, three images of the superior and inferior optic nerve head were obtained for each subject. A 1010-pixel frame was used to measure blood flow, volume and velocity in the four quadrants of the peripapillary retina. Central 24-2 visual field testing was carried out at each visit. Repeated measures analysis of covariance was used to assess change over time between the normal and POAG groups for the SLDF parameters. Univariate linear regression analysis for mean deviation and glaucoma change probability (GCP) analysis were used to identify visual field progression. Results: Blood volume, flow and velocity measured in the inferior nasal quadrant of the peripapillary retina decreased significantly over time for the POAG group compared to the normal group (p=0.0073, 0.0097, 0.0095 respectively). Overall, 2 glaucoma patients showed a significantly deteriorating MD slope, while 7 patients showed visual field progression with GPA. All of the patients progressing with GPA, showed change in the superior hemifield and, of those, 14% showed change in the inferior hemifield. Conclusion: Glaucoma patients showed a decrease in blood flow, volume and velocity in the inferior nasal peripapillary retina. A regional variation in microvascular retinal capillary blood flow may provide insight into the pathogenesis of glaucomatous optic neuropathy. Keywords: 331 blood supply • 554 retina • 624 visual fields
Resumo:
Fluorescence spectroscopy has recently become more common in clinical medicine. However, there are still many unresolved issues related to the methodology and implementation of instruments with this technology. In this study, we aimed to assess individual variability of fluorescence parameters of endogenous markers (NADH, FAD, etc.) measured by fluorescent spectroscopy (FS) in situ and to analyse the factors that lead to a significant scatter of results. Most studied fluorophores have an acceptable scatter of values (mostly up to 30%) for diagnostic purposes. Here we provide evidence that the level of blood volume in tissue impacts FS data with a significant inverse correlation. The distribution function of the fluorescence intensity and the fluorescent contrast coefficient values are a function of the normal distribution for most of the studied fluorophores and the redox ratio. The effects of various physiological (different content of skin melanin) and technical (characteristics of optical filters) factors on the measurement results were additionally studied.The data on the variability of the measurement results in FS should be considered when interpreting the diagnostic parameters, as well as when developing new algorithms for data processing and FS devices.
Resumo:
The present article describes a standard instrument for the continuous online determination of retinal vessel diameters, the commercially available retinal vessel analyzer. This report is intended to provide informed guidelines for measuring ocular blood flow with this system. The report describes the principles underlying the method and the instruments currently available, and discusses clinical protocol and the specific parameters measured by the system. Unresolved questions and the possible limitations of the technique are also discussed. © 2009 Acta Ophthalmol.
Resumo:
Consistent clinical and experimental evidence points to the involvement of two enzymatic systems (the matrix metalloproteinases-MMPs and the protein crosslinking enzymes transglutaminases) in prominent physiologic roles of endothelium in the maintenance of vascular wall integrity, regulation of blood flow and clotting, and exchange of molecules and cells between the extra- and the intravascular space. These issues are briefly discussed in relation to differentiation of the endothelium within the vascular system, mechanisms of molecular regulation and the effects of their disruption in pathology. While the roles of MMPs are now understood in detail and represent a promising target for pharmacological interventions, much less is known on the roles of transglutaminases in vascular biology. These last enzymes are expressed at extremely high levels in endothelial cells and are involved in cell matrix interactions important to angiogenesis and apoptosis/cell death of endothelial cells, in the control of blood clotting and and in the transfer of molecules and cells across the vascular walls. On the clinical side, these properties are relevant in vascular inflammatory processes, atherosclerosis and tumor metastasis. We summarise the large body of evidence available in this perspective and discuss its implications for the development of new therapeutic strategies.