6 resultados para TRANSPARENT
em Aston University Research Archive
Resumo:
Since 1996 direct femtosecond inscription in transparent dielectrics has become the subject of intensive research. This enabling technology significantly expands the technological boundaries for direct fabrication of 3D structures in a wide variety of materials. It allows modification of non-photosensitive materials, which opens the door to numerous practical applications. In this work we explored the direct femtosecond inscription of waveguides and demonstrated at least one order of magnitude enhancement in the most critical parameter - the induced contrast of the refractive index in a standard borosilicate optical glass. A record high induced refractive contrast of 2.5×10-2 is demonstrated. The waveguides fabricated possess one of the lowest losses, approaching level of Fresnel reflection losses at the glassair interface. High refractive index contrast allows the fabrication of curvilinear waveguides with low bend losses. We also demonstrated the optimisation of the inscription regimes in BK7 glass over a broad range of experimental parameters and observed a counter-intuitive increase of the induced refractive index contrast with increasing translation speed of a sample. Examples of inscription in a number of transparent dielectrics hosts using high repetition rate fs laser system (both glasses and crystals) are also presented. Sub-wavelength scale periodic inscription inside any material often demands supercritical propagation regimes, when pulse peak power is more than the critical power for selffocusing, sometimes several times higher than the critical power. For a sub-critical regime, when the pulse peak power is less than the critical power for self-focusing, we derive analytic expressions for Gaussian beam focusing in the presence of Kerr non-linearity as well as for a number of other beam shapes commonly used in experiments, including astigmatic and ring-shaped ones. In the part devoted to the fabrication of periodic structures, we report on recent development of our point-by-point method, demonstrating the shortest periodic perturbation created in the bulk of a pure fused silica sample, by using third harmonics (? =267 nm) of fundamental laser frequency (? =800 nm) and 1 kHz femtosecond laser system. To overcome the fundamental limitations of the point-by-point method we suggested and experimentally demonstrated the micro-holographic inscription method, which is based on using the combination of a diffractive optical element and standard micro-objectives. Sub-500 nm periodic structures with a much higher aspect ratio were demonstrated. From the applications point of view, we demonstrate examples of photonics devices by direct femtosecond fabrication method, including various vectorial bend-sensors fabricated in standard optical fibres, as well as a highly birefringent long-period gratings by direct modulation method. To address the intrinsic limitations of femtosecond inscription at very shallow depths we suggested the hybrid mask-less lithography method. The method is based on precision ablation of a thin metal layer deposited on the surface of the sample to create a mask. After that an ion-exchange process in the melt of Ag-containing salts allows quick and low-cost fabrication of shallow waveguides and other components of integrated optics. This approach covers the gap in direct fs inscription of shallow waveguide. Perspectives and future developments of direct femtosecond micro-fabrication are also discussed.
Resumo:
We demonstrate a regenerative optical grooming switch for buffer-less interconnection of metro/access and metro/core ring networks with switching functionality in time, space and wavelength domain. Key functionalities of the router are the traffic aggregation with time-slot interchanging (TSI) functionality, the WDM-to-ODTM multiplexing and the OTDM-to-WDM demultiplexing of high-speed channel into lower bit-rate tributaries as well as multi-wavelength all-optical 2R regeneration of several higher-speed signals. BER and Q-factor measurements of different switching scenarios show excellent performance with no error floor and Q-factors above 21 dB.
Resumo:
This thesis presents a large scale numerical investigation of heterogeneous terrestrial optical communications systems and the upgrade of fourth generation terrestrial core to metro legacy interconnects to fifth generation transmission system technologies. Retrofitting (without changing infrastructure) is considered for commercial applications. ROADM are crucial enabling components for future core network developments however their re-routing ability means signals can be switched mid-link onto sub-optimally configured paths which raises new challenges in network management. System performance is determined by a trade-off between nonlinear impairments and noise, where the nonlinear signal distortions depend critically on deployed dispersion maps. This thesis presents a comprehensive numerical investigation into the implementation of phase modulated signals in transparent reconfigurable wavelength division multiplexed fibre optic communication terrestrial heterogeneous networks. A key issue during system upgrades is whether differential phase encoded modulation formats are compatible with the cost optimised dispersion schemes employed in current 10 Gb/s systems. We explore how robust transmission is to inevitable variations in the dispersion mapping and how large the margins are when suboptimal dispersion management is applied. We show that a DPSK transmission system is not drastically affected by reconfiguration from periodic dispersion management to lumped dispersion mapping. A novel DPSK dispersion map optimisation methodology which reduces drastically the optimisation parameter space and the many ways to deploy dispersion maps is also presented. This alleviates strenuous computing requirements in optimisation calculations. This thesis provides a very efficient and robust way to identify high performing lumped dispersion compensating schemes for use in heterogeneous RZ-DPSK terrestrial meshed networks with ROADMs. A modified search algorithm which further reduces this number of configuration combinations is also presented. The results of an investigation of the feasibility of detouring signals locally in multi-path heterogeneous ring networks is also presented.
Resumo:
Flexible optical networking is identified today as the solution that offers smooth system upgradability towards Tb/s capacities and optimized use of network resources. However, in order to fully exploit the potentials of flexible spectrum allocation and networking, the development of a flexible switching node is required capable to adaptively add, drop and switch tributaries with variable bandwidth characteristics from/to ultra-high capacity wavelength channels at the lowest switching granularity. This paper presents the main concept and technology solutions envisioned by the EU funded project FOX-C, which targets the design, development and evaluation of the first functional system prototype of flexible add-drop and switching cross-connects. The key developments enable ultra-fine switching granularity at the optical subcarrier level, providing end-to-end routing of any tributary channel with flexible bandwidth down to 10Gb/s (or even lower) carried over wavelength superchannels, each with an aggregated capacity beyond 1Tb/s. © 2014 IEEE.
Resumo:
For all-solution-processed (ASP) devices, transparent conducting oxide (TCO) nanocrystal (NC) inks are anticipated as the next-generation electrodes to replace both those synthesized by sputtering techniques and those consisting of rare metals, but a universal and one-pot method to prepare these inks is still lacking. A universal one-pot strategy is now described; through simply heating a mixture of metal-organic precursors a wide range of TCO NC inks, which can be assembled into high-performance electrodes for use in ASP optoelectronics, were synthesized. This method can be used for various oxide NC inks with yields as high as 10 g. The formed NCs are of high crystallinity, uniform morphology, monodispersity, and high ink stability and feature effective doping. Therefore, the inks can be readily assembled into films with a surface roughness of 1.6 nm. Typically, a sheet resistance of 110 Ω sq-1 can be achieved with a transmittance of 88%, which is the best performance for TCO NC ink-based electrodes described to date. These electrodes can thus drive a polymer light-emitting diode (PLED) with a luminance of 2200 cdm-2 at 100 mA cm-2.
Resumo:
Distributed fibre sensors provide unique capabilities for monitoring large infrastructures with high resolution. Practically, all these sensors are based on some kind of backscattering interaction. A pulsed activating signal is launched on one side of the sensing fibre and the backscattered signal is read as a function of the time of flight of the pulse along the fibre. A key limitation in the measurement range of all these sensors is introduced by fibre attenuation. As the pulse travels along the fibre, the losses in the fibre cause a drop of signal contrast and consequently a growth in the measurement uncertainty. In typical single-mode fibres, attenuation imposes a range limit of less than 30km, for resolutions in the order of 1-2 meters. An interesting improvement in this performance can be considered by using distributed amplification along the fibre [1]. Distributed amplification allows having a more homogeneous signal power along the sensing fibre, which also enables reducing the signal power at the input and therefore avoiding nonlinearities. However, in long structures (≥ 50 km), plain distributed amplification does not perfectly compensate the losses and significant power variations along the fibre are to be expected, leading to inevitable limitations in the measurements. From this perspective, it is simple to understand intuitively that the best possible solution for distributed sensors would be offered by a virtually transparent fibre, i.e. a fibre exhibiting effectively zero attenuation in the spectral region of the pulse. In addition, it can be shown that lossless transmission is the working point that allows the minimization of the amplified spontaneous emission (ASE) noise build-up. © 2011 IEEE.