5 resultados para TP53 mutations

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

FRET (fluorescence resonance energy transfer) and co-immunoprecipitation studies confirmed the capacity of beta-arrestin 2 to self-associate. Amino acids potentially involved in direct protein-protein interaction were identified via combinations of spot-immobilized peptide arrays and mapping of surface exposure. Among potential key amino acids, Lys(285), Arg(286) and Lys(295) are part of a continuous surface epitope located in the polar core between the N- and C-terminal domains. Introduction of K285A/R286A mutations into beta-arrestin 2-eCFP (where eCFP is enhanced cyan fluorescent protein) and beta-arrestin 2-eYFP (where eYFP is enhanced yellow fluorescent protein) constructs substantially reduced FRET, whereas introduction of a K295A mutation had a more limited effect. Neither of these mutants was able to promote beta2-adrenoceptor-mediated phosphorylation of the ERK1/2 (extracellular-signal-regulated kinase 1/2) MAPKs (mitogen-activated protein kinases). Both beta-arrestin 2 mutants displayed limited capacity to co-immunoprecipitate ERK1/2 and further spot-immobilized peptide arrays indicated each of Lys(285), Arg(286) and particularly Lys(295) to be important for this interaction. Direct interactions between beta-arrestin 2 and the beta2-adrenoceptor were also compromised by both K285A/R286A and K295A mutations of beta-arrestin 2. These were not non-specific effects linked to improper folding of beta-arrestin 2 as limited proteolysis was unable to distinguish the K285A/R286A or K295A mutants from wild-type beta-arrestin 2, and the interaction of beta-arrestin 2 with JNK3 (c-Jun N-terminal kinase 3) was unaffected by the K285A/R286A or L295A mutations. These results suggest that amino acids important for self-association of beta-arrestin 2 also play an important role in the interaction with both the beta2-adrenoceptor and the ERK1/2 MAPKs. Regulation of beta-arrestin 2 self-association may therefore control beta-arrestin 2-mediated beta2-adrenoceptor-ERK1/2 MAPK signalling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. The secondary structure of folded RNA sequences is a good model to map phenotype onto genotype, as represented by the RNA sequence. Computational studies of the evolution of ensembles of RNA molecules towards target secondary structures yield valuable clues to the mechanisms behind adaptation of complex populations. The relationship between the space of sequences and structures, the organization of RNA ensembles at mutation-selection equilibrium, the time of adaptation as a function of the population parameters, the presence of collective effects in quasispecies, or the optimal mutation rates to promote adaptation all are issues that can be explored within this framework. Results. We investigate the effect of microscopic mutations on the phenotype of RNA molecules during their in silico evolution and adaptation. We calculate the distribution of the effects of mutations on fitness, the relative fractions of beneficial and deleterious mutations and the corresponding selection coefficients for populations evolving under different mutation rates. Three different situations are explored: the mutation-selection equilibrium (optimized population) in three different fitness landscapes, the dynamics during adaptation towards a goal structure (adapting population), and the behavior under periodic population bottlenecks (perturbed population). Conclusions. The ratio between the number of beneficial and deleterious mutations experienced by a population of RNA sequences increases with the value of the mutation rate µ at which evolution proceeds. In contrast, the selective value of mutations remains almost constant, independent of µ, indicating that adaptation occurs through an increase in the amount of beneficial mutations, with little variations in the average effect they have on fitness. Statistical analyses of the distribution of fitness effects reveal that small effects, either beneficial or deleterious, are well described by a Pareto distribution. These results are robust under changes in the fitness landscape, remarkably when, in addition to selecting a target secondary structure, specific subsequences or low-energy folds are required. A population perturbed by bottlenecks behaves similarly to an adapting population, struggling to return to the optimized state. Whether it can survive in the long run or whether it goes extinct depends critically on the length of the time interval between bottlenecks. © 2010 Stich et al; licensee BioMed Central Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Purpose Receptor activity-modifying proteins (RAMPs) define the pharmacology of the calcitonin receptor-like receptor (CLR). The interactions of the different RAMPs with this class B GPCR yield high-affinity calcitonin gene-related peptide (CGRP) or adrenomedullin (AM) receptors. However, the mechanism for this is unclear. Experimental Approach Guided by receptor models, we mutated residues in the N-terminal helix of CLR, RAMP2 and RAMP3 hypothesized to be involved in peptide interactions. These were assayed for cAMP production with AM, AM2 and CGRP together with their cell surface expression. Binding studies were also conducted for selected mutants. Key Results An important domain for peptide interactions on CLR from I32 to I52 was defined. Although I41 was universally important for binding and receptor function, the role of other residues depended on both ligand and RAMP. Peptide binding to CLR/RAMP3 involved a more restricted range of residues than that to CLR/RAMP1 or CLR/RAMP2. E101 of RAMP2 had a major role in AM interactions, and F111/W84 of RAMP2/3 was important with each peptide. Conclusions and Implications RAMP-dependent effects of CLR mutations suggest that the different RAMPs control accessibility of peptides to binding residues situated on the CLR N-terminus. RAMP3 appears to alter the role of specific residues at the CLR-RAMP interface compared with RAMP1 and RAMP2. © 2013 The Authors. British Journal of Pharmacology published by John Wiley &. Sons Ltd on behalf of The British Pharmacological Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Craniopharyngiomas and pituitary adenomas are both tumors of the hypothalamic and pituitary region, respectively that are frequently associated with endocrine defects either because of direct involvement of hormone producing cells (most pituitary tumors) or because of secondary defects due to disturbance of hypothalamic function (some pituitary tumors and craniopharyngiomas). Some studies suggest that mutant β-catenin gene cells in craniopharyngiomas and pituitary adenomas contribute to their tumorigenesis. DNA was extracted from 73 cranial tumors and subjected to polymerase chain reaction (PCR) with previously described primers encompassing glycogen synthase kinase-3β phosphorylation sites of the β-catenin gene. Sequenced PCR products for possible β-catenin gene mutations showed a total of 7/43 alterations in adamantinomatous craniopharyngioma-derived DNA samples. Two previously described β-catenin mutations in codon 33 TCT(Ser) > TGT(Cys) and codon 37 TCT(Ser) > TTT(Phe), whereas three novel mutations in codon 41 ACC(Thr) > ATC(Ile), codon 33 TCT(Ser) > TAT(Tyr) and codon 32 GAC(Asp) > AAC(Asn) were observed. None of the 22 pituitary adenomas and the eight papillary craniopharyngiomas analyzed presented any sequence alterations. These findings demonstrate an association between β-catenin gene alterations and craniopharyngiomas of the adamantinomatous type. Since this gene product is involved with development, these results suggest that β-catenin mutations may contribute to the initiation and subsequent growth of congenital craniopharyngiomas. © Springer 2005.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: To determine the carrier rate of the GJB2 mutation c.35delG and c.101T>C in a UK population study; to determine whether carriers of the mutation had worse hearing or otoacoustic emissions compared to non-carriers. DESIGN: Prospective cohort study. SETTING: University of Bristol, UK. PARTICIPANTS: Children in the Avon Longitudinal Study of Parents and Children. 9202 were successfully genotyped for the c.35delG mutation and c.101>T and classified as either carriers or non-carriers. OUTCOME MEASURES: Hearing thresholds at age 7, 9 and 11 years and otoacoustic emissions at age 9 and 11. RESULTS: The carrier frequency of the c.35delG mutation was 1.36% (95% CI 1.13 to 1.62) and c.101T>C was 2.69% (95% CI 2.37 to 3.05). Carriers of c.35delG and c.101T>C had worse hearing than non-carriers at the extra-high frequency of 16 kHz. The mean difference in hearing at age 7 for the c.35delG mutation was 8.53 dB (95% CI 2.99, 14.07) and 12.57 dB at age 9 (95% CI 8.10, 17.04). The mean difference for c.101T>C at age 7 was 3.25 dB (95% CI -0.25 to 6.75) and 7.61 dB (95% CI 4.26 to 10.96) at age 9. Otoacoustic emissions were smaller in the c.35delG mutation carrier group: at 4 kHz the mean difference was -4.95 dB (95% CI -6.70 to -3.21) at age 9 and -3.94 dB (95% CI -5.78 to -2.10) at age 11. There was weak evidence for differences in otoacoustic emissions amplitude for c.101T>C carriers. CONCLUSION: Carriers of the c.35delG mutation and c.101T>C have worse extra-high-frequency hearing than non-carriers. This may be a predictor for changes in lower-frequency hearing in adulthood. The milder effects observed in carriers of c.101T>C are in keeping with its classification as a mutation causing mild/moderate hearing loss in homozygosity or compound heterozygosity.