2 resultados para TIR CO2 FIR O2 profili VMR lembo retrieval microwindows
em Aston University Research Archive
Resumo:
A pin on disc wear machine has been used to study the oxidational wear of low alloy steel in a series of experiments which were carried out under dry wear sliding conditions at range of loads from 11.28 to 49.05 N and three sliding speeds of 2 m/s, 3.5 m/s and 5 m/s, in atmosphere of air, Ar, CO2, 100% O2, 20% O2-80% Ar and 2% O2-98% Ar. Also, the experiments were conducted to study frictional force, surface and contact temperatures and surface parameters of the wearing pins. The wear debris was examined using x-ray diffraction technique for the identification of compounds produced by the wear process. Scanning electron microscopy was employed to study the topographical features of worn pins and to measure the thickness of the oxide films. Microhardness tests were carried out to investigate the influence of the sub-surface microhardness in tribological conditions. Under all loads, speeds and atmospheres parabolic oxidation growth was observed on worn surfaces, although such growth is dependent on the concentration of oxygen in the atmospheres employed. These atmospheres are shown to influence wear rate and coefficient of friction with change in applied load. The nature of the atmosphere also has influence on surface and contact temperatures as determined from heat flow analysis. Unlubricated wear debris was found to be a mixture of αFe2O3, Fe3O4 and FeO oxide. A model has been proposed for tribo-oxide growth demonstrating the importance of diffusion rate and oxygen partial pressure, in the oxidation processes and thus in determination of wear rates.
Resumo:
Drastic improvements in styrene yield and selectivity were achieved in the oxidative dehydrogenation of ethylbenzene by staged feeding of O2. Six isothermal packed bed reactors were used in series with intermediate feeding of O2, while all EB was fed to the first reactor, diluted with helium or CO2 (1:5 molar ratio), resulting in total O2:EB molar feed ratios of 0.2-0.6. The two catalyst samples, γ-Al 2O3 and 5P/SiO2, that were applied both benefitted from this operation mode. The ethylbenzene conversion per stage and the selectivity to styrene were significantly improved. The production of COX was effectively reduced, while the selectivity to other side products remained unchanged. Compared with co-feeding at a total O 2:EB molar feed ratio of 0.6, by staged feeding the EB conversion (+15% points for both catalysts), ST selectivity (+4% points for both samples) and O2 (ST) selectivity (+9% points for γ-Al2O 3 and +17% points for 5P/SiO2) all improved. The ethylbenzene conversion over 5P/SiO2 can be increased from 18% to 70% by increasing the number of reactors from 1 to 6 with each reactor a total amount of O2 of 0.1 without the loss of ST selectivity (93%). For 5P/SiO2 a higher temperature (500 C vs. 450 C for Al 2O3) is required. Essentially more catalyst (5P/SiO 2) was required to achieve full O2 conversion in each reactor. Staged feeding of O2 does not eliminate the existing issues of the catalyst stability both in time-on stream and as a function of the number of catalyst regenerations (5P/SiO2), or the relatively moderate performance (relatively low styrene selectivity for γ-Al2O 3). © 2014 Elsevier B.V.