4 resultados para TIN(IV) COMPLEXES
em Aston University Research Archive
Resumo:
Clay minerals, both natural and synthetic, have a wide range of applications. Smectite clays are not true insulators, their slight conductivity has been utilized by the paper industry in the development of mildly conducting paper. In particular, the synthetic hectorite clay, laponite, is employed to produce paper which is used in automated drawing offices where electro graphic printing is common. The primary objective of this thesis was to modify smectite clays, particularly laponite, to achieve enhanced conductivity. The primary objective was more readily achieved if the subsidiary objective of understanding the mechanism of conductivity was defined. The cyclic voltammograms of some cobalt complexes were studied in free solution and as clay modified electrodes to investigate the origin of electroactivity in clay modified electrodes. The electroactivity of clay modified electrodes prepared using our method can be attributed to ion pairs sorbed to the surface of the electrode, in excess of the cationic exchange capacity. However, some new observations were made concerning the co-ordination chemistry of the tri-2-pyridylamine complexes used which needed clarification. The a.c. conductivity of pressed discs of laponite RD was studied over the frequency range 12Hz- 100kHz using three electrode systems namely silver-loaded epoxy resin (paste), stainless-steel and aluminium. The a. c. conductivity of laponite consists of two components, reactive (minor) and ionic (major) which can be observed almost independently by utilizing the different electrode systems. When the temperature is increased the conductivity of laponite increases and the activation energy for conductivity can be calculated. Measurement of the conductivity of thin films of laponite RD in two crystal planes shows a degree of anisotropy in the a.c. conductivity. Powder X-ray diffraction and 119Sn Mossbauer spectroscopy studies have shown that attempts to intercalate some phenyltin compounds into laponite RD under ambient conditions result in the formation of tin(IV) oxide pillars. 119Sn Mossbauer data indicate that the order of effectiveness of conversion to pillars is in the order: Ph3SnCl > (Ph3Sn)2O, Ph2SnCl2 The organic product of the pillaring process was identified by 13C m.a.s.n.m.r. spectroscopy as trapped in the pillared lattice. This pillaring reaction is much more rapid when carried out in Teflon containers in a simple domestic microwave oven. These pillared clays are novel materials since the pillaring is achieved via neutral precursors rather than sacrificial reaction of the exchangeable cation. The pillaring reaction depends on electrophilic attack on the aryl tin bond by Brønsted acid sites within the clay. Two methods of interlamellar modification were identified which lead to enhanced conductivity of laponite, namely ion exchange and tin(IV) oxide pillaring. A monoionic potassium exchanged laponite shows a four fold increase in a.c. conductivity compared to sodium exchanged laponite RD. The increased conductivity is due to the appearence of an ionic component. The conductivity is independent of relative humidity and increases with temperature. Tin(IV) oxide pillared laponite RD samples show a significant increase in conductivity. Samples prepared from Ph2SnCl2 show an increase in excess of an order of magnitude. The conductivity of tin(IV) oxide pillared laponite samples is dominated by an ionic component.
Resumo:
The kinetics of the polymerization of styrene iniated by 1-chloro-1-phenyltehane/tin (IV) chloride in the presence of tetrabutylammonium chloride have been studied. Dilatometry studies at 25 °C were conducted and the orders of reaction were established. Molecular weight studies were conducted for these experiments using size exclusion chromatography. These studies indicated that transfer/termination reactions were present. The observed kinetics may be explained by a polymerization mechanism involving a single propagating species which is present in low concentrations. Reactions at 0 °C and -15 °C have shown that a "living" polymerization could be obtained at low temperatures. A method was derived to study the kinetics of a "living" polymerization by following the increase in degree of polymerization with time. Polymerizations of styrene were conducted using 1,4-bis(bromomethyl)benzene as a difunctional co-catalyst. These reactions produced polymers with broad or bimodal molecular weight distributions. These observations may be explained by the rate of initiation being slower than the rate of propagation or the presence of transfer/termination reactions. Reactions were conducted using a co-catalyst using a co-catalyst produced by the addition of 1,1-diphenylethane to 1,4-bis(bromomethyl)benzene. Size exclusion chromatography studies showed that the polymers produced had a narrower molecular weight distribution than those produced by polymerizations initiated by 1,4-bis(bromomethyl)benzene alone. However the polydispersity was still observed to increase with reaction time. This may also be explained by slow initiation compared to the rate of propagation. Polymerizations initiated by both bifunctional initiators were examined using the method of studying reaction kinetics by following the change in number average degree of polymerization. The results indicated that a straight line relationship could also be obtained with a non-living polymerization.
Resumo:
Quaternary ammonium exchanged laponites (Quat-laponites) show selectivity in the adsorption of phenols and chlorinated phenols. Strong adsorbate-adsorbent interactions are indicated by adsorption isotherms. Adsorption of phenols and chlorinated phenols by Quat-smectites is greater than that by the Bi Quat-Smectites prepared in this study. It is thought that the quaternary ammonium exchanged smectite components of the Bi Quat-smectites interact with each other (adsorbent-adsorbent interactions) reducing the number of sites available for adsorbate-adsorbent interactions. Solidification/stabilisation studies of 2-chlorophenol show that a blend of ground granulated blast furnace slag and ordinary Portland cement attenuates 2-chlorophenol more effectively than ordinary Portland cement alone. Tetramethyl ammonium- (TMA-) and tetramethyl phosphonium- (TMP-) montmorillonites were exposed to solutions of phenol or chlorinated phenols. TMP- montmorillonite was the better adsorbent and preferentially adsorbed 4-chlorophenol over phenol. Hydration of the interlayer cations occurs to a greater extent in the TMA-montmorillonite than the TMP-montmorillonite restricting interlayer adsorption. Contrary to that observed for phenols and chlorinated phenols, the Quat-smectites were ineffective as adsorbents for triphenyltin hydroxide and bis(tributyltin) oxide at room temperature. Under microwave conditions, only bis(tributyltin) oxide was adsorbed by the quaternary ammonium exchanged smectites. Bis(tributyltin) oxide was adsorbed from ethanol on the surface of the smectite clays at room temperature and under microwave conditions. The adsorbate-adsorbent interactions were weak. Adsorption is accompanied by conversion of bis(tributyltin) oxide to a different tin(IV) species and the release of sodium cations from the montmorillonite interlayer region. Attempts to introduce conditions suitable for charge transfer interactions between synthesised quaternary ammonium compounds and 2,4,6-trichlorophenol are documented. Transition metal complex exchanged clays adsorb 2,4,6-trichlorophenol and phenol. Strong adsorbate-adsorbent interactions (Type I isotherms) occur when the adsorbate is 2,4,6-trichlorophenol and when the adsorbent is [Fe(bipy)3]2+ exchanged montmorillonite or [Co(bipy)3]3+ exchanged montmorillonite. The 2,2'-bipyridyl ligands of the adsorbents are electron rich and the 2,4,6-trichlorophenol is electron deficient. This may have enhanced adsorbate-adsorbent interactions.
Resumo:
A series of manganese(II) [Mn(L)] and manganese(III) [Mn(L)(X)] (X = ClO4, OAc, NCS, N3, Cl, Br and I) complexes have been synthesized from Schiff base ligands N,N′-o- phenylenebis(salicylideneimine)(LH2) and N,N′-o-phenylenebis(5- bromosalicylideneimine)(L′H2) obtained by condensation of salicylaldehyde or 5-Br salicylaldehyde with o-phenylene-diamine. The complexes have been characterized by the combination of IR, UV-Vis spectroscopy, magnetic measurements and electrochemical studies. Three manganese(III) complexes 3 [Mn(L)(ClO4)(H2O)], 5 [Mn(L)(OAc)] and 13 [Mn(L)(NCS)] have been characterized by X-ray crystallography. The X-ray structures show that the manganese(III) is hexa-coordinated in 3, it is penta-coordinated in 13, while in 5 there is an infinite chain where the MnL moieties are connected by acetate ions acting as bridging bidentate ligand. The cyclic voltammograms of all the manganese(III) complexes exhibit two reversible/quasi-reversible/ irreversible responses assignable to Mn(III)/Mn(II) and Mn(IV)/Mn(III) couples. It was observed that the ligand L′H2 containing the 5-bromosal moiety always stabilizes the lower oxidation states compared to the corresponding unsubstituted LH2. Cyclic voltammograms of the manganese(II) complexes (1 and 2) exhibit a quasi-reversible Mn(III)/Mn(II) couple at E1/2 -0.08 V for 1 and 0.054 V for 2. © 2005 Elsevier B.V. All rights reserved.