12 resultados para TIGHT GAS. Low permeability. Hydraulic fracturing. Reservoir modeling. Numerical simulation
em Aston University Research Archive
Resumo:
This paper presents the development of a modelling study for part of the Birmingham area. Restricted access and model resolutions have limited wide applications of some of the previously developed models. The study area covers approximately 221 km2, and is underlain geologically, by a multi-layer setup with varied hydraulic properties. The basal aquifer unit is the Kidderminster sandstone Formation, overlain by the Wildmoor and Bromsgrove sandstone Formations. The presence of the Birmingham fault which acts as low permeability barrier demarcates the eastern and southern boundaries. The western boundary is defined by the presence of crystallised rocks and coal measures, while a groundwater divide defines the northern boundary. The estimated recharge flux is 112 mm/yr. The ranges of calibrated values obtained for horizontal and vertical hydraulic conductivities are 5.787x10-6 - 2.315x10-5 m/s and 5.787x10-8 - 1.157x10-7 m/s, respectively. Corresponding values obtained for the specific yield and specific storage are 0.10 - 0.12, and 1x10 -4 - 5x10 -4. The calculated numerical error is generally much less than 0.1 %. Hydraulic layering within the Permo-Triassic sandstone aquifer is thought to account for the large vertical anisotropy. Although, uncertainties are associated with the use of a simplistic delay approach to characterise the effects of the unsaturated zone, the modelled values are comparable with those obtained in the literature, and the flow pattern predictions appear to be realistic. © Research India Publications.
Resumo:
A Finite Element Analysis (FEA) model is used to explore the relationship between clogging and hydraulics that occurs in Horizontal Subsurface Flow Treatment Wetlands (HSSF TWs) in the United Kingdom (UK). Clogging is assumed to be caused by particle transport and an existing single collector efficiency model is implemented to describe this behaviour. The flow model was validated against HSSF TW survey results obtained from the literature. The model successfully simulated the influence of overland flow on hydrodynamics, and the interaction between vertical flow through the low permeability surface layer and the horizontal flow of the saturated water table. The clogging model described the development of clogging within the system but under-predicted the extent of clogging which occurred over 15 years. This is because important clogging mechanisms were not considered by the model, such as biomass growth and vegetation establishment. The model showed the usefulness of FEA for linking hydraulic and clogging phenomenon in HSSF TWs and could be extended to include treatment processes. © 2011 Springer Science+Business Media B.V.
Resumo:
The phenomenon of low-PMD fibres is examined through numerical simulations. Instead of the coarse-step method we are using an algorithm developed through the Manakov-PMD equation. With the integration of the Manakov-PMD equation we have access to the fibre spin which relates to the orientation of the birefringence. The simulation results produced correspond to the behaviour of a low-PMD spun fibre. Furthermore we provide an analytical approximation compared to the numerical data. © 2005 Optical Society of America.
Resumo:
The civil engineering industry generally regards new methods and technology with a high amount of scepticism, preferring to use traditional and trusted methods. During the 1980s competition for civil engineering consultancy work in the world has become fierce. Halcrow recognised the need to maintain and improve their competitive edge over other consultants. The use of new technology in the form of microcomputers was seen to be one method to maintain and improve their repuation in the world. This thesis examines the role of microcomputers in civil engineering consultancy with particular reference to overseas projects. The involvement of civil engineers with computers, both past and present, has been investigated and a survey of the use of microcomputers by consultancies was carried out, the results are presented and analysed. A resume of the state-of-the-art of microcomputer technology was made. Various case studies were carried out in order to examine the feasibility of using microcomputers on overseas projects. One case study involved the examination of two projects in Bangladesh and is used to illustrate the requirements and problems encountered in such situations. Two programming applications were undertaken, a dynamic programming model of a single site reservoir and the simulation of the Bangladesh gas grid system. A cost-benefit analysis of a water resources project using microcomputers in the Aguan Valley, Honduras was carried out. Although the initial cost of microcomputers is often small, the overall costs can prove to be very high and are likely to exceed the costs of traditional computer methods. A planned approach for the use of microcomputers is essential in order to reap the expected benefits and recommendations for the implementation of such an approach are presented.
Resumo:
This study has investigated the inclusion of pulverised fuel ash (PFA) and blast furnace slag (BFS) into hardened cement pastes (HCP) in retarding the ingress of chloride ions and oxygen molecules from the external environment. The influence of environmental factors such as drying and carbonation on the pore structure and diffusional properties of OPC, OPC/30%PFA and OPC/65%BFS hardened pastes was investigated. Specimens were desorbed from a saturated surface dry condition to a near constant weight at 65% relative humidity (RH) while others were simultaneously exposed to a 65% RH atmosphere and a carbon dioxide atmosphere of up to 5% by volume until there were fully carbonated. The presence of the interfacial zone at the cement paste-aggregate interface was critically reviewed and identified. The influence of the interfacial zone on porosity and chloride ingress in assumed periodic composites of glass bead mortars was also studied. The investigations have demonstrated the following: (a) The use of fly ash and slag in blended cement pastes has resulted in a marked reduction in capillary porosity and rate of chloride ingress. (b) The ratio of oxygen to chloride diffusion coefficients increased from values close to 1 in permeable pastes, to values of around 15 in low-permeability blended fly ash and slag pastes. This supports the view that the diffusion of chloride ions is retarded by the surface charge of the hydrated cement gel in low-permeability pastes. (c) Compared with plain OPC pastes, the carbonation of blended fly ash and slag pastes resulted in a marked increase in the coarse capillary porosity and a corresponding increase in the oxygen and chloride diffusion rates.
Resumo:
Trimethoprim (TMP) is a dihydrofolate reductase (DHFR) inhibitor which prevents the conversion of dihydrofolic acid into tetrahydrofolic acid, resulting in the depletion of the latter and leading to bacterial death. Oral bioavailability of TMP is hindered by both its low solubility and low permeability. This study aims to prepare novel salts of TMP using anionic amino acids; aspartic and glutamic acid as counter ions in order to improve solubility and dissolution. TMP salts were prepared by lyophilisation and characterized using FT-IR spectroscopy, proton nuclear magnetic resonance (1HNMR), Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis (TGA). Both the amino acids formed salts with TMP in a 1:1 molar ratio and showed a 280 fold improvement in solubility. Investigation of the microbiological activity of the prepared salts against TMP sensitive Escherichia coli showed that the new salts not only retained antibacterial activity but also exhibited higher zone of inhibition which was attributed to improved physicochemical characters such as higher solubility and dissolution. The results are an important finding that could potentially impact on faster onset of antibacterial activity and reduced therapeutic dose when administered to patients. Studies are underway investigating the effect of ion-pairing TMP with amino acids on the permeability profile of the drug.
Resumo:
The accumulation and transport of solutes are hallmarks of osmoadaptation. In this study we have employed the inability of the Saccharomyces cerevisiae gpd1Δ gpd2Δ mutant both to produce glycerol and to adapt to high osmolarity to study solute transport through aquaglyceroporins and the control of osmostress-induced signaling. High levels of different polyols, including glycerol, inhibited growth of the gpd1Δ gpd2Δ mutant. This growth inhibition was suppressed by expression of the hyperactive allele Fps1-AΔ of the osmogated yeast aquaglyceroporin, Fps1. The degree of suppression correlated with the relative rate of transport of the different polyols tested. Transport studies in secretory vesicles confirmed that Fps1-Δ1 transports polyols at increased rates compared with wild type Fps1. Importantly, wild type Fps1 and Fps1-Δ1 showed similarly low permeability for water. The growth defect on polyols in the gpd1Δ gpd2Δ mutant was also suppressed by expression of a heterologous aquaglyceroporin, rat AQP9. We surmised that this suppression was due to polyol influx, causing the cells to passively adapt to the stress. Indeed, when aquaglyceroporin-expressing gpd1Δ gpd2Δ mutants were treated with glycerol, xylitol, or sorbitol, the osmosensing HOG pathway was activated, and the period of activation correlated with the apparent rate of polyol uptake. This observation supports the notion that deactivation of the HOG pathway is closely coupled to osmotic adaptation. Taken together, our "conditional" osmotic stress system facilitates studies on aquaglyceroporin function and reveals features of the osmosensing and signaling system. © 2005 by The American Society for Biochemistry and Molecular Biology, Inc.
Resumo:
Since wireless network optimisations can be typically designed and evaluated independently of one another under the assumption that they can be applied jointly or independently. In this paper, we have analysis some rate algorithms in wireless networks. Since wireless networks have different standards in IEEE with peculiar features, data rate is one of those important parameters that wireless networks depend on for performances. The optimisation of this network is dependent on the behaviour of a particular rate algorithm in a network scenario. We have considered some first and second generation's rate algorithm, and it is all about selecting an appropriate data rate that any available wireless network can utilise for transmission in order to achieve a good performance. We have designed and analysis a wireless network and results obtained for some rate algorithms, like ONOE and AARF.
Resumo:
Finite element simulations have been performed along side Galerkin-type calculations that examined the development of volumetrically heated flow patterns in a horizontal layer controlled by the Prandtl number, Pr, and the Grashof number, Gr. The fluid was bounded by an isothermal plane above an adiabatic plane. In the simulations performed here, a number of convective polygonal planforms occurred, as Gr increased above the critical Grashof number, Grc at Pr = 7, while roll structures were observed for Pr < 1 at 2Grc.
Resumo:
We show, by numerical simulation, that the impact of tight optical filtering in high speed coherent 50% RZ-BPSK systems can be greatly reduced by offsetting the filter (equivalent to laser detuning). We show that by offsetting the filter by up to half the filter bandwidth, that system performance is improved by > 2.5 dB in the calculated 'Q' for an OSNR of 12 dB. © 2013 IEEE.
Resumo:
We propose and experimentally demonstrate a refractive index (RI) sensor based on cascaded microfiber knot resonators (CMKRs) with Vernier effect. Deriving from high proportional evanescent field of microfiber and spectrum magnification function of Vernier effect, the RI sensor shows high sensitivity as well as high detection resolution. By using the method named "Drawing-Knotting-Assembling (DKA)", a compact CMKRs is fabricated for experimental demonstration. With the assistance of Lorentz fitting algorithm on the transmission spectrum, sensitivity of 6523nm/RIU and detection resolution up to 1.533 x 10-7 RIU are obtained in the experiment which show good agreement with the numerical simulation. The proposed all-fiber RI sensor with high sensitivity, compact size and low cost can be widely used for chemical and biological detection, as well as the electronic/magnetic field measurement
Resumo:
We study a small circuit of coupled nonlinear elements to investigate general features of signal transmission through networks. The small circuit itself is perceived as building block for larger networks. Individual dynamics and coupling are motivated by neuronal systems: We consider two types of dynamical modes for an individual element, regular spiking and chattering and each individual element can receive excitatory and/or inhibitory inputs and is subjected to different feedback types (excitatory and inhibitory; forward and recurrent). Both, deterministic and stochastic simulations are carried out to study the input-output relationships of these networks. Major results for regular spiking elements include frequency locking, spike rate amplification for strong synaptic coupling, and inhibition-induced spike rate control which can be interpreted as a output frequency rectification. For chattering elements, spike rate amplification for low frequencies and silencing for large frequencies is characteristic