3 resultados para TH2-specific cells

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the clinical/microbiological laboratory there are currently several ways of separating specific cells from a fluid suspension. Conventionally cells can be separated based on size, density, electrical charge, light-scattering properties, and antigenic surface properties. Separating cells using these parameters can require complex technologies and specialist equipment. This paper proposes new Bio-MEMS (microelectromechanical systems) filtration chips manufactured using deep reactive ion etching (DRIE) technology that, when used in conjunction with an optical microscope and a syringe, can filter and grade cells for size without the requirement for additional expensive equipment. These chips also offer great versatility in terms of design and their low cost allows them to be disposable, eliminating sample contamination. The pumping mechanism, unlike many other current filtration techniques, leaves samples mechanically and chemically undamaged. In this paper the principles behind harnessing passive pumping are explored, modelled, and validated against empirical data, and their integration into a microfluidic device to separate cells from a mixed population suspension is described. The design, means of manufacture, and results from preliminary tests are also presented. © IMechE 2007.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction: Adjuvants potentiate immune responses, reducing the amount and dosing frequency of antigen required for inducing protective immunity. Adjuvants are of special importance when considering subunit, epitope-based or more unusual vaccine formulations lacking significant innate immunogenicity. While numerous adjuvants are known, only a few are licensed for human use; principally alum, and squalene-based oil-in-water adjuvants. Alum, the most commonly used, is suboptimal. There are many varieties of adjuvant: proteins, oligonucleotides, drug-like small molecules and liposome-based delivery systems with intrinsic adjuvant activity being perhaps the most prominent. Areas covered: This article focuses on small molecules acting as adjuvants, with the author reviewing their current status while highlighting their potential for systematic discovery and rational optimisation. Known small molecule adjuvants (SMAs) can be synthetically complex natural products, small oligonucleotides or drug-like synthetic molecules. The author provides examples of each class, discussing adjuvant mechanisms relevant to SMAs, and exploring the high-throughput discovery of SMAs. Expert opinion: SMAs, particularly synthetic drug-like adjuvants, are amenable to the plethora of drug-discovery techniques able to optimise the properties of biologically active small molecules. These range from laborious synthetic modifications to modern, rational, effort-efficient computational approaches, such as QSAR and structure-based drug design. In principal, any property or characteristic can thus be designed in or out of compounds, allowing us to tailor SMAs to specific biological functions, such as targeting specific cells or pathways, in turn affording the power to tailor SMAs to better address different diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The spatial pattern of cellular neurofibrillary tangles (NFT) was studied in the supra- and infragranular layers of various cortical regions in cases of Alzheimer's disease (AD). The objective was to test the hypothesis that NFT formation was associated with the cells of origin of specific cortico-cortical projections. The novel feature of the study was that pattern analysis enabled the dimension and spacing of NFT clusters along the cortical ribbon to be estimated. In the majority of brain regions studied, NFT occurred in clusters of neurons which were regularly spaced along the cortical strip. This pattern is consistent with the predicted distribution of the cells of origin of specific cortico-cortico projections. Mean NFT cluster size varied from 250 to > 12800 microns in different cortical tissues suggesting either variation in the size of the cell clusters or a dynamic process in the development of NFT in relation to these cell clusters. The formation of NFT in cell clusters which may give rise to the feed-forward and feed-back cortico-cortical projections suggests a possible route of spread of NFT pathology in AD between cortical regions and from the cortex to subcortical areas.