7 resultados para TGF-ß, IL-10, asthma, Treg

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aged population have an increased susceptibility to infection, therefore function of the innate immune system may be impaired as we age. Macrophages, and their precursors monocytes, play an important role in host defence in the form of phagocytosis, and also link the innate and adaptive immune system via antigen presentation. Classically-activated 'M1' macrophages are pro-inflammatory, which can be induced by encountering pathogenic material or pro-inflammatory mediators. Alternatively activated 'M2' macrophages have a largely reparative role, including clearance of apoptotic bodies and debris from tissues. Despite some innate immune receptors being implicated in the clearance of apoptotic cells, the process has been observed to have a dominant anti-inflammatory phenotype with cytokines such as IL-10 and TGF-ß being implicated. The atherosclerotic plaque contains recruited monocytes and macrophages, and is a highly inflammatory environment despite high levels of apoptosis. At these sites, monocytes differentiate into macrophages and gorge on lipoproteins, resulting in formation of 'foam cells' which then undergo apoptosis, recruiting further monocytes. This project seeks to understand why, given high levels of apoptosis, the plaque is a pro-inflammatory environment. This phenomenon may be the result of the aged environment or an inability of foam cells to elicit an anti-inflammatory effect in response to dying cells. Here we demonstrate that lipoprotein treatment of macrophages in culture results in reduced capacity to clear apoptotic cells. The effect of lipoprotein treatment on apoptotic cell-mediated immune modulation of macrophage function is currently under study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aged population have an increased susceptibility to infection, therefore function of the innate immune system may be impaired as we age. Macrophages, and their precursors monocytes, play an important role in host defence in the form of phagocytosis, and also link the innate and adaptive immune system via antigen presentation. Classically-activated ‘M1’ macrophages are pro-inflammatory, which can be induced by encountering pathogenic material or pro-inflammatory mediators. Alternatively activated ‘M2’ macrophages have a largely reparative role, including clearance of apoptotic bodies and debris from tissues. Despite some innate immune receptors being implicated in the clearance of apoptotic cells, the process has been observed to have a dominant anti-inflammatory phenotype with cytokines such as IL-10 and TGF-ß being implicated. The atherosclerotic plaque contains recruited monocytes and macrophages, and is a highly inflammatory environment despite high levels of apoptosis. At these sites, monocytes differentiate into macrophages and gorge on lipoproteins, resulting in formation of ‘foam cells’ which then undergo apoptosis, recruiting further monocytes. This project seeks to understand why, given high levels of apoptosis, the plaque is a pro-inflammatory environment. This phenomenon may be the result of the aged environment or an inability of foam cells to elicit an anti-inflammatory effect in response to dying cells. Here we demonstrate that lipoprotein treatment of macrophages in culture results in reduced capacity to clear apoptotic cells. The capability of lipoprotein treated macrophages to respond to inflammatory stimuli is also shown. Monocyte recruitment to the plaque is currently under study, as is apoptotic cell-mediated immune modulation of human monocyte-derived macrophages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differences in lipid metabolism associate with age-related disease development and lifespan. Inflammation is a common link between metabolic dysregulation and aging. Saturated fatty acids (FAs) initiate pro-inflammatory signalling from many cells including monocytes; however, no existing studies have quantified age-associated changes in individual FAs in relation to inflammatory phenotype. Therefore, we have determined the plasma concentrations of distinct FAs by gas chromatography in 26 healthy younger individuals (age < 30 years) and 21 healthy FA individuals (age > 50 years). Linear mixed models were used to explore the association between circulating FAs, age and cytokines. We showed that plasma saturated, poly- and mono-unsaturated FAs increase with age. Circulating TNF-α and IL-6 concentrations increased with age, whereas IL-10 and TGF-β1 concentrations decreased. Oxidation of MitoSOX Red was higher in leucocytes from FA adults, and plasma oxidized glutathione concentrations were higher. There was significant colinearity between plasma saturated FAs, indicative of their metabolic relationships. Higher levels of the saturated FAs C18:0 and C24:0 were associated with lower TGF-β1 concentrations, and higher C16:0 were associated with higher TNF-α concentrations. We further examined effects of the aging FA profile on monocyte polarization and metabolism in THP1 monocytes. Monocytes preincubated with C16:0 increased secretion of pro-inflammatory cytokines in response to phorbol myristate acetate-induced differentiation through ceramide-dependent inhibition of PPARγ activity. Conversely, C18:1 primed a pro-resolving macrophage which was PPARγ dependent and ceramide dependent and which required oxidative phosphorylation. These data suggest that a midlife adult FA profile impairs the switch from proinflammatory to lower energy, requiring anti-inflammatory macrophages through metabolic reprogramming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differences in lipid metabolism associate with age-related disease development and lifespan. Inflammation is a common link between metabolic dysregulation and aging. Saturated fatty acids (FAs) initiate pro-inflammatory signalling from many cells including monocytes; however, no existing studies have quantified age-associated changes in individual FAs in relation to inflammatory phenotype. Therefore, we have determined the plasma concentrations of distinct FAs by gas chromatography in 26 healthy younger individuals (age < 30 years) and 21 healthy FA individuals (age > 50 years). Linear mixed models were used to explore the association between circulating FAs, age and cytokines. We showed that plasma saturated, poly- and mono-unsaturated FAs increase with age. Circulating TNF-α and IL-6 concentrations increased with age, whereas IL-10 and TGF-β1 concentrations decreased. Oxidation of MitoSOX Red was higher in leucocytes from FA adults, and plasma oxidized glutathione concentrations were higher. There was significant colinearity between plasma saturated FAs, indicative of their metabolic relationships. Higher levels of the saturated FAs C18:0 and C24:0 were associated with lower TGF-β1 concentrations, and higher C16:0 were associated with higher TNF-α concentrations. We further examined effects of the aging FA profile on monocyte polarization and metabolism in THP1 monocytes. Monocytes preincubated with C16:0 increased secretion of pro-inflammatory cytokines in response to phorbol myristate acetate-induced differentiation through ceramide-dependent inhibition of PPARγ activity. Conversely, C18:1 primed a pro-resolving macrophage which was PPARγ dependent and ceramide dependent and which required oxidative phosphorylation. These data suggest that a midlife adult FA profile impairs the switch from proinflammatory to lower energy, requiring anti-inflammatory macrophages through metabolic reprogramming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of cationic liposomes as experimental adjuvants for subunit peptide of protein vaccines is well documented. Recently the cationic liposome CAF01, composed of dimethyldioctadecylammonium (DDA) and trehalose dibehenate (TDB), has entered Phase I clinical trials for use in a tuberculosis (TB) vaccine. CAF01 liposomes are a heterogeneous population with a mean vesicle size of 500 nm; a strong retention of antigen at the injection site and a Th1-biassed immune response are noted. The purpose of this study was to investigate whether CAF01 liposomes of significantly different vesicle sizes exhibited altered pharmacokinetics in vivo and cellular uptake with activation in vitro. Furthermore, the immune response against the TB antigen Ag85B-ESAT-6 was followed when various sized CAF01 liposomes were used as vaccine adjuvants. The results showed no differences in vaccine (liposome or antigen) draining from the injection site, however, significant differences in the movement of liposomes to the popliteal lymph node were noted. Liposome uptake by THP-1 vitamin D3 stimulated macrophage-like cells did not show a liposome size-dependent pattern of uptake. Finally, whilst there were no significant differences in the IgG1/2 regardless of the liposome size used as a delivery vehicle for Ag85B-ESAT-6, vesicle size has a size dependent effect on cell proliferation and IL-10 production with larger liposomes (in excess of 2 µm) promoting the highest proliferation and lowest IL-10 responses, yet vesicles of ~500 nm promoting higher IFN-? cytokine production from splenocytes and higher IL-1ß at the site of injection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purified B-cells fail to proliferate in response to the strong thymus-independent (TI) antigen Lipopolysaccharide (LPS) in the absence of macrophages (Corbel and Melchers, 1983). The fact that macrophages, or factors derived from them are required is supported by the inability of marginal zone B-cells in infants to respond to highly virulent strains of bacteria such as Neisseria meningitidis and Streptococcus pneumoniae (Timens, 1989). This may be due to the lack of CD21 expression on B-cells in infants which could associate with its co-receptor (C3d) on adjacent macrophages. It is not clear whether cell surface contacts and/or soluble products are involved in lymphocyte-macrophage interactions in response to certain antigens. This thesis describes the importance of the macrophage in lymphocyte responses to T-dependent (TD) and TI antigens. The major findings of this thesis were as follows: (1). Macrophages were essential for a full proliferative response to a range of T - and B-cell mitogens and TI-1 and TI-2 antigens, including Concanavalin A, LPS, Pokeweed mitogen (PWM), Dextran sulphate, Phytohaemagglutinin-P (PHA-P) and Poly[I][C]. (2). A ratio of 1 macrophage to 1000 lymphocytes was sufficient for the mitogens to exert their effects. (3). The optimal conditions were established for the activation of an oxidative burst in cells of the monocyte/macrophage lineage as measured by luminometry. The order of ability was OpZ >PMA/lonomycin >f-MLP >Con A >DS >PHA >Poly[I][C] >LPS >PWM. Responses were only substantial and protracted with OpZ and PMA. Peritoneal macrophages were the most responsive cells, whereas splenic and alveolar macrophages were significantly less active and no response could be elicited with Kupffer cells, thus demonstrating heterogeneity between macrophages. (4). Activated macrophages that were then fixed with paraformaldehyde were unable to restore mitogenic responsiveness, even with a ratio of 1 macrophage to 5 lymphocytes. (5). Although highly purified T- and B-cells could respond to mitogen provided live macrophages were present, maximum activation was only observed when all 3 cell types were present. (6). Supernatants from purified macrophage cultures treated with a range of activators were able to partially restore lymphocyte responses to mitogen in macrophage-depleted splenocyte cultures, and purified T - and B-cell cultures. In fact supernatants from macrophages treated with LPS for only 30 minutes could restore responsiveness. Supernatants from OpZ treated macrophages were without effect. (7). Macrophage supernatants could not induce proliferation in the absence of mitogen. They therefore provide a co-mitogenic signal required by lymphocytes in order to respond to mitogen. (8). Macrophage product profiles revealed that LPS and Con A-treated macrophage supernatants showed elevated levels of IL-1β, TNF -α L TB4 and TXB2. These products were therefore good candidates as the co-mitogenic factor. The possible inhibitory factors secreted by OpZ-treated macrophages were PGE2, IL-10 and NO. (9). The removal of cytokines, eicosanoids and TNF-α from LPS-treated macrophage supernatants using Cycloheximide, Dexamethasone and an MMPI respectively, resulted in the inability of these supernatants to restore macrophage-depleted lymphocyte responses to mitogen. (10). rIL-1β and rTNF-α are co-mitogenic factors, as macrophage-depleted lymphocytes incubated with rIL-1β and rTNF-α can respond to mitogen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liposomes remain at the forefront of vaccine design due to their well documented abilities to act as delivery vehicles and adjuvants. Liposomes have been described to initiate an antigen depot-effect, thereby increasing antigen exposure to circulating antigen-presenting cells. More recently, in-depth reviews have focussed on inherent immunostimulatory abilities of various cationic lipids, the use of which is consequently of interest in the development of subunit protein vaccines which when delivered without an adjuvant are poorly immunogenic. The importance of liposomes for the mediation of an antigen depot-effect was examined by use of a dual-radiolabelling technique thereby allowing simultaneous detection of liposomal and antigenic components and analysis of their pharmacokinetic profile. In addition to investigating the biodistribution of these formulations, their physicochemical properties were analysed and the ability of the various liposome formulations to elicit humoral and cell-mediated immune responses was investigated. Our results show a requirement of cationic charge and medium/strong levels of antigen adsorption to the cationic liposome in order for both a liposome and antigen depot-effect to occur at the injection site. The choice of injection route had little effect on the pharmacokinetics or immunogenicity observed. In vitro, cationic liposomes were more cytotoxic than neutral liposomes due to significantly enhanced levels of cell uptake. With regards to the role of bilayer fluidity, liposomes expressing more rigid bilayers displayed increased retention at the injection site although this did not necessarily result in increased antigen retention. Furthermore, liposome bilayer rigidity did not necessarily correlate with improved immunogenicity. In similar findings, liposome size did not appear to control liposome or antigen retention at the injection site. However, a strong liposome size correlation between splenocyte proliferation and production of IL-10 was noted; specifically immunisation with large liposomes lead to increased levels of splenocyte proliferation coupled with decreased IL-10 production.