31 resultados para TDR (Time Domain Reflectometry)

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high resolution optical time domain reflectometry (OTDR) based on an all-fiber chaotic source is demonstrated. We analyze the key factors limiting the operational range of such an OTDR, e.g., integral Rayleigh backscattering and the fiber loss, which degrade the optical signal to noise ratio at the receiver side, and then the guideline for counter-act such signal fading is discussed. The experimentally demonstrated correlation OTDR presents ability of 100km sensing range and 8.2cm spatial resolution (1.2 million resolved points), as a verification of the theoretical analysis. To the best of our knowledge, this is the first time that correlation OTDR measurement is performed over such a long distance with such high precision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a high-resolution optical time domain reflectometry (OTDR) based on an all-fiber supercontinuum source. The source simply consists of a laser with moderate power and a section of fiber which has a zero dispersion wavelength near the laser's central wavelength. Spectrum and time domain properties of the source are investigated, showing that the source has great capability in nonlinear optics, such as correlation OTDR. We analyze one of the key factors limiting the operational range of such an OTDR, i.e., sampling time. Finally, we experimentally demonstrate a correlation OTDR with 25km sensing range and 5.3cm spatial resolution, as a verification of theoretical analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a long range, high precision optical time domain reflectometry (OTDR) based on an all-fiber supercontinuum source. The source simply consists of a CW pump laser with moderate power and a section of fiber, which has a zero dispersion wavelength near the laser's central wavelength. Spectrum and time domain properties of the source are investigated, showing that the source has great capability in nonlinear optics, such as correlation OTDR due to its ultra-wide-band chaotic behavior, and mm-scale spatial resolution is demonstrated. Then we analyze the key factors limiting the operational range of such an OTDR, e. g., integral Rayleigh backscattering and the fiber loss, which degrades the optical signal to noise ratio at the receiver side, and then the guideline for counter-act such signal fading is discussed. Finally, we experimentally demonstrate a correlation OTDR with 100km sensing range and 8.2cm spatial resolution (1.2 million resolved points), as a verification of theoretical analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we report a simple fibre laser torsion sensor system using an intracavity tilted fibre grating as a torsion encoded loss filter. When the grating is subjected to twist, it induces loss to the cavity, thus affecting the laser oscillation build-up time. By measuring the build-up time, both twist direction and angle on the grating can be monitored. Using a low-cost photodiode and a two-channel digital oscilloscope, we have characterised the torsion sensing capability of this fibre laser system and obtained a torsion sensitivity of ~412µs/(rad/m) in the dynamic range from -150° to +150°.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have proposed a new technique of all-optical nonlinear pulse processing for use at a RZ optical receiver, which is based on an AM or any device with a similar function of temporal gating/slicing enhanced by the effect of Kerr nonlinearity in a NDF. The efficiency of the technique has been demonstrated by application to timing jitter and noise-limited RZ transmission at 40 Gbit/s. Substantial suppression of the signal timing jitter and overall improvement of the receiver performance has been demonstrated using the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a new all-optical signal processing technique to enhance the performance of a return-to-zero optical receiver, which is based on nonlinear temporal pulse broadening and flattening in a normal dispersion fiber and subsequent slicing of the pulse temporal waveform. The potential of the method is demonstrated by application to timing jitter-and noise-limited transmission at 40 Gbit/s. © 2005 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we report a simple fibre laser torsion sensor system using an intracavity tilted fibre grating as a torsion encoded loss filter. When the grating is subjected to twist, it induces loss to the cavity, thus affecting the laser oscillation build-up time. By measuring the build-up time, both twist direction and angle on the grating can be monitored. Using a low-cost photodiode and a two-channel digital oscilloscope, we have characterised the torsion sensing capability of this fibre laser system and obtained a torsion sensitivity of ~412µs/(rad/m) in the dynamic range from -150° to +150°.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose and experimentally demonstrate a new method to extend the range of Brillouin optical time domain analysis (BOTDA) systems. It exploits the virtual transparency created by second-order Raman pumping in optical fibers. The idea is theoretically analyzed and experimentally demonstrated in a 50 km fiber. By working close to transparency, we also show that the measurement length of the BOTDA can be increased up to 100 km with 2 meter resolution. We envisage extensions of this technique to measurement lengths well beyond this value, as long as the issue of relative intensity noise (RIN) of the primary Raman pump can be avoided. © 2010 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A distributed fiber sensing system based on ultraweak FBGs (UWFBGs) assisted polarization optical time-domain reflectometry (POTDR) is proposed for load and vibration sensing with improved signal-to-noise ratio (SNR) and sensitivity. UWFBGs with reflectivity higher than Rayleigh scattering coefficient per pulse are induced into a POTDR system to increase the intensity of the back signal. The performance improvement of the system has been studied. The numerical analysis has shown that the SNR and sensitivity of the system can be effectively improved by integrating UWFBGs along the whole sensing fiber, which has been clearly proven by the experiment. The experimental results have shown that by using UWFBGs with 1.1 x 10-5 reflectivity and 10-m interval distance, the SNR is improved by 11 dB, and the load and vibration sensitivities of the POTDR are improved by about 10.7 and 9 dB, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulses with an envelope in the form of the Airy function are obtained using Green's functions in 1D and 2D in time domain. Interaction of such pulses with a dielectric layer is investigated and expressions for reflected and transmitted pulses are obtained. © 2012 EUROPEAN MICROWAVE ASSOC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel interrogation technique for fully distributed linearly chirped fiber Bragg grating (LCFBG) strain sensors with simultaneous high temporal and spatial resolution based on optical time-stretch frequency-domain reflectometry (OTS-FDR) is proposed and experimentally demonstrated. LCFBGs is a promising candidate for fully distributed sensors thanks to its longer grating length and broader reflection bandwidth compared to normal uniform FBGs. In the proposed system, two identical LCFBGs are employed in a Michelson interferometer setup with one grating serving as the reference grating whereas the other serving as the sensing element. Broadband spectral interferogram is formed and the strain information is encoded into the wavelength-dependent free spectral range (FSR). Ultrafast interrogation is achieved based on dispersion-induced time stretch such that the target spectral interferogram is mapped to a temporal interference waveform that can be captured in real-Time using a single-pixel photodector. The distributed strain along the sensing grating can be reconstructed from the instantaneous RF frequency of the captured waveform. High-spatial resolution is also obtained due to high-speed data acquisition. In a proof-of-concept experiment, ultrafast real-Time interrogation of fully-distributed grating sensors with various strain distributions is experimentally demonstrated. An ultrarapid measurement speed of 50 MHz with a high spatial resolution of 31.5 μm over a gauge length of 25 mm and a strain resolution of 9.1 μϵ have been achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports the developnent of a mathenatical model and distributed, multi variable computer-control for a pilot plant double-effect climbing-film evaporator. A distributed-parameter model of the plant has been developed and the time-domain model transformed into the Laplace domain. The model has been further transformed into an integral domain conforming to an algebraic ring of polynomials, to eliminate the transcendental terms which arise in the Laplace domain due to the distributed nature of the plant model. This has made possible the application of linear control theories to a set of linear-partial differential equations. The models obtained have well tracked the experimental results of the plant. A distributed-computer network has been interfaced with the plant to implement digital controllers in a hierarchical structure. A modern rnultivariable Wiener-Hopf controller has been applled to the plant model. The application has revealed a limitation condition that the plant matrix should be positive-definite along the infinite frequency axis. A new multi variable control theory has emerged fram this study, which avoids the above limitation. The controller has the structure of the modern Wiener-Hopf controller, but with a unique feature enabling a designer to specify the closed-loop poles in advance and to shape the sensitivity matrix as required. In this way, the method treats directly the interaction problems found in the chemical processes with good tracking and regulation performances. Though the ability of the analytical design methods to determine once and for all whether a given set of specifications can be met is one of its chief advantages over the conventional trial-and-error design procedures. However, one disadvantage that offsets to some degree the enormous advantages is the relatively complicated algebra that must be employed in working out all but the simplest problem. Mathematical algorithms and computer software have been developed to treat some of the mathematical operations defined over the integral domain, such as matrix fraction description, spectral factorization, the Bezout identity, and the general manipulation of polynomial matrices. Hence, the design problems of Wiener-Hopf type of controllers and other similar algebraic design methods can be easily solved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE. To investigate objectively and noninvasively the role of cognitive demand on autonomic control of systemic cardiovascular and ocular accommodative responses in emmetropes and myopes of late-onset. METHODS. Sixteen subjects (10 men, 6 women) aged between 18 and 34 years (mean ± SD: 22.6 ± 4.4 years), eight emmetropes (EMMs; mean spherical equivalent [MSE] refractive error ± SD: 0.05 ± 0.24 D) and eight with late-onset myopia (LOMs; MSE ± SD: -3.66 ± 2.31 D) participated in the study. Subjects viewed stationary numerical digits monocularly within a Badal optical system (at both 0.0 and -3.0 D) while performing a two-alternative, forced-choice paradigm that matched cognitive loading across subjects. Five individually matched cognitive levels of increasing difficulty were used in random order for each subject. Five 20-second, continuous-objective recordings of the accommodative response measured with an open-view infrared autorefractor were obtained for each cognitive level, whereas simultaneous measurement of heart rate was continuously recorded with a finger-mounted piezoelectric pulse transducer for 5 minutes. Fast Fourier transformation of cardiovascular function allowed the relative power of the autonomic components to be assessed in the frequency domain, whereas heart period gave an indication of the time-domain response. RESULTS. Increasing the cognitive demand led to a significant reduction in the accommodative response in all subjects (0.0 D: by -0.35 ± 0.33 D; -3.0 D: by -0.31 ± 0.40 D, P < 0.001). The greater lag of LOMs compared with EMMs was not significant (P = 0.07) at both distance (0.38 ± 0.35 D) and near (0.14 ± 0.42 D). Mean heart period reduced with increasing levels of workload (P < 0.0005). LOMs exhibited a relative elevation in sympathetic system activity compared to EMMs. Within refractive groups, however, accommodative shifts with increasing cognition correlated with parasympathetic activity (r = 0.99, P < 0.001), more than with sympathetic activity (r = 0.62, P > 0.05). CONCLUSIONS. In an equivalent workload paradigm, increasing cognitive demand caused a reduction in accommodative response that was attributable principally to a concurrent reduction in the relative power of the parasympathetic component of the autonomic nervous system (ANS). The disparity in accommodative response between EMMs and LOMs, however, appears to be augmented by changes in the sympathetic nervous component of the systemic ANS. Copyright © Association for Research in Vision and Ophthalmology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To evaluate the hypothesis that objective measures of open- and closed-loop ocular accommodation are related to systemic cardiovascular function, and ipso facto autonomic nervous system activity. METHODS: Sixty subjects (29 male; 31 female) varying in age from 18 to 33 years (average: 20.3 +/- 2.9 years) with a range of refractive errors [mean spherical equivalent (MSE): -7.12 to +1.82 D] participated in the study. Five 20-s continuous objective recordings of the accommodative response, measured with an open-view IR autorefractor (Shin-Nippon SRW-5000), were obtained for a variety of open- and closed-loop accommodative demands while simultaneous continuous measurement of heart rate was recorded with a finger-mounted piezo-electric pulse transducer for 5 min. Fast Fourier Transformation of cardiovascular function allowed the absolute and relative power of the autonomic components to be assessed in the frequency-domain, whereas heart period gave an indication of the time-domain response. RESULTS: Increasing closed-loop accommodative demand led to a concurrent increase in heart rate of approximately 2 beats/min for a 4.0 D increase in accommodative demand. The increase was attributable to a reduction in the absolute (p < 0.05) and normalised (p < 0.001) input of the systemic parasympathetic nervous system, and was unaffected by refractive group. The interaction with refractive group failed to reach significance. CONCLUSIONS: For sustained accommodation effort, the data demonstrate covariation between the oculomotor and cardiovascular systems which implies that a near visual task can significantly influence cardiovascular behaviour. Accommodative effort alone, however, is not a sufficient stimulus to induce autonomic differences between refractive groups. The data suggest that both the oculomotor and cardiovascular systems are predominantly attributable to changes in the systemic parasympathetic nervous system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis demonstrates that the use of finite elements need not be confined to space alone, but that they may also be used in the time domain, It is shown that finite element methods may be used successfully to obtain the response of systems to applied forces, including, for example, the accelerations in a tall structure subjected to an earthquake shock. It is further demonstrated that at least one of these methods may be considered to be a practical alternative to more usual methods of solution. A detailed investigation of the accuracy and stability of finite element solutions is included, and methods of applications to both single- and multi-degree of freedom systems are described. Solutions using two different temporal finite elements are compared with those obtained by conventional methods, and a comparison of computation times for the different methods is given. The application of finite element methods to distributed systems is described, using both separate discretizations in space and time, and a combined space-time discretization. The inclusion of both viscous and hysteretic damping is shown to add little to the difficulty of the solution. Temporal finite elements are also seen to be of considerable interest when applied to non-linear systems, both when the system parameters are time-dependent and also when they are functions of displacement. Solutions are given for many different examples, and the computer programs used for the finite element methods are included in an Appendix.