16 resultados para T-cell receptor repertoire

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A set of 38 epitopes and 183 non-epitopes, which bind to alleles of the HLA-A3 supertype, was subjected to a combination of comparative molecular similarity indices analysis (CoMSIA) and soft independent modeling of class analogy (SIMCA). During the process of T cell recognition, T cell receptors (TCR) interact with the central section of the bound nonamer peptide; thus only positions 4−8 were considered in the study. The derived model distinguished 82% of the epitopes and 73% of the non-epitopes after cross-validation in five groups. The overall preference from the model is for polar amino acids with high electron density and the ability to form hydrogen bonds. These so-called “aggressive” amino acids are flanked by small-sized residues, which enable such residues to protrude from the binding cleft and take an active role in TCR-mediated T cell recognition. Combinations of “aggressive” and “passive” amino acids in the middle part of epitopes constitute a putative TCR binding motif

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Since the sequencing of the human genome was completed, attention has turned to examining the functionality of the molecular machinery, in particular of protein expression. Differential proteome analysis by two-dimensional electrophoresis has been adopted to study changes in T cell proteomes during T cell activation, and this work is increasing our understanding of the complexity of signals elicited across multiple pathways. The purpose of this review is to summarize the available evidence in the application of proteomic techniques and methodologies to understand T cell receptor activation from lipid raft and cytoskeletal rearrangements, through to signalling cascades, transcription factor modulation and changes in protein expression patterns. These include post-translational modifications, which are not encoded by the genome. © 2007 British Society for Immunology.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

T cell receptor (TCR) recognition of peptide-MHC class I (pMHC) complexes is a crucial event in the adaptive immune response to pathogens. Peptide epitopes often display a strong dominance hierarchy, resulting in focusing of the response on a limited number of the most dominant epitopes. Such T cell responses may be additionally restricted by particular MHC alleles in preference to others. We have studied this poorly understood phenomenon using Theileria parva, a protozoan parasite that causes an often fatal lymphoproliferative disease in cattle. Despite its antigenic complexity, CD8+ T cell responses induced by infection with the parasite show profound immunodominance, as exemplified by the Tp1(214-224) epitope presented by the common and functionally important MHC class I allele N*01301. We present a high-resolution crystal structure of this pMHC complex, demonstrating that the peptide is presented in a distinctive raised conformation. Functional studies using CD8+ T cell clones show that this impacts significantly on TCR recognition. The unconventional structure is generated by a hydrophobic ridge within the MHC peptide binding groove, found in a set of cattle MHC alleles. Extremely rare in all other species, this feature is seen in a small group of mouse MHC class I molecules. The data generated in this analysis contribute to our understanding of the structural basis for T cell-dependent immune responses, providing insight into what determines a highly immunogenic p-MHC complex, and hence can be of value in prediction of antigenic epitopes and vaccine design.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Antigenic peptide is presented to a T-cell receptor (TCR) through the formation of a stable complex with a major histocompatibility complex (MHC) molecule. Various predictive algorithms have been developed to estimate a peptide's capacity to form a stable complex with a given MHC class II allele, a technique integral to the strategy of vaccine design. These have previously incorporated such computational techniques as quantitative matrices and neural networks. A novel predictive technique is described, which uses molecular modeling of predetermined crystal structures to estimate the stability of an MHC class II-peptide complex. The structures are remodeled, energy minimized, and annealed before the energetic interaction is calculated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper resolves the long standing debate as to the proper time scale τ of the onset of the immunological synapse bond, the noncovalent chemical bond defining the immune pathways involving T cells and antigen presenting cells. Results from our model calculations show τ to be of the order of seconds instead of minutes. Close to the linearly stable regime, we show that in between the two critical spatial thresholds defined by the integrin:ligand pair (Δ2∼ 40-45 nm) and the T-cell receptor TCR:peptide-major-histocompatibility-complex pMHC bond (Δ1∼ 14-15 nm), τ grows monotonically with increasing coreceptor bond length separation δ (= Δ2-Δ1∼ 26-30 nm) while τ decays with Δ1 for fixed Δ2. The nonuniversal δ-dependent power-law structure of the probability density function further explains why only the TCR:pMHC bond is a likely candidate to form a stable synapse.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

JenPep is a relational database containing a compendium of thermodynamic binding data for the interaction of peptides with a range of important immunological molecules:  the major histocompatibility complex, TAP transporter, and T cell receptor. The database also includes annotated lists of B cell and T cell epitopes. Version 2.0 of the database is implemented in a bespoke postgreSQL database system and is fully searchable online via a perl/HTML interface (URL:  http://www.jenner.ac.uk/JenPep).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The article analyzes the contribution of stochastic thermal fluctuations in the attachment times of the immature T-cell receptor TCR: peptide-major-histocompatibility-complex pMHC immunological synapse bond. The key question addressed here is the following: how does a synapse bond remain stabilized in the presence of high-frequency thermal noise that potentially equates to a strong detaching force? Focusing on the average time persistence of an immature synapse, we show that the high-frequency nodes accompanying large fluctuations are counterbalanced by low-frequency nodes that evolve over longer time periods, eventually leading to signaling of the immunological synapse bond primarily decided by nodes of the latter type. Our analysis shows that such a counterintuitive behavior could be easily explained from the fact that the survival probability distribution is governed by two distinct phases, corresponding to two separate time exponents, for the two different time regimes. The relatively shorter timescales correspond to the cohesion:adhesion induced immature bond formation whereas the larger time reciprocates the association:dissociation regime leading to TCR:pMHC signaling. From an estimate of the bond survival probability, we show that, at shorter timescales, this probability PΔ(τ) scales with time τ as a universal function of a rescaled noise amplitude DΔ2, such that PΔ(τ)∼τ-(ΔD+12),Δ being the distance from the mean intermembrane (T cell:Antigen Presenting Cell) separation distance. The crossover from this shorter to a longer time regime leads to a universality in the dynamics, at which point the survival probability shows a different power-law scaling compared to the one at shorter timescales. In biological terms, such a crossover indicates that the TCR:pMHC bond has a survival probability with a slower decay rate than the longer LFA-1:ICAM-1 bond justifying its stability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cellular senescence is a stress response mechanism that limits tumorigenesis and tissue damage. Induction of cellular senescence commonly coincides with an immunogenic phenotype that promotes self-elimination by components of the immune system, thereby facilitating tumor suppression and limiting excess fibrosis during wound repair. The mechanisms by which senescent cells regulate their immune surveillance are not completely understood. Here we show that ligands of an activating Natural Killer (NK) cell receptor (NKG2D), MICA and ULBP2 are consistently up-regulated following induction of replicative senescence, oncogene-induced senescence and DNA damage - induced senescence. MICA and ULBP2 proteins are necessary for efficient NK-mediated cytotoxicity towards senescent fibroblasts. The mechanisms regulating the initial expression of NKG2D ligands in senescent cells are dependent on a DNA damage response, whilst continuous expression of these ligands is regulated by the ERK signaling pathway. In liver fibrosis, the accumulation of senescent activated stellate cells is increased in mice lacking NKG2D receptor leading to increased fibrosis. Overall, our results provide new insights into the mechanisms regulating the expression of immune ligands in senescent cells and reveal the importance of NKG2D receptor-ligand interaction in protecting against liver fibrosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cell:cell bond between an immune cell and an antigen presenting cell is a necessary event in the activation of the adaptive immune response. At the juncture between the cells, cell surface molecules on the opposing cells form non-covalent bonds and a distinct patterning is observed that is termed the immunological synapse. An important binding molecule in the synapse is the T-cell receptor (TCR), that is responsible for antigen recognition through its binding with a major-histocompatibility complex with bound peptide (pMHC). This bond leads to intracellular signalling events that culminate in the activation of the T-cell, and ultimately leads to the expression of the immune eector function. The temporal analysis of the TCR bonds during the formation of the immunological synapse presents a problem to biologists, due to the spatio-temporal scales (nanometers and picoseconds) that compare with experimental uncertainty limits. In this study, a linear stochastic model, derived from a nonlinear model of the synapse, is used to analyse the temporal dynamics of the bond attachments for the TCR. Mathematical analysis and numerical methods are employed to analyse the qualitative dynamics of the nonequilibrium membrane dynamics, with the specic aim of calculating the average persistence time for the TCR:pMHC bond. A single-threshold method, that has been previously used to successfully calculate the TCR:pMHC contact path sizes in the synapse, is applied to produce results for the average contact times of the TCR:pMHC bonds. This method is extended through the development of a two-threshold method, that produces results suggesting the average time persistence for the TCR:pMHC bond is in the order of 2-4 seconds, values that agree with experimental evidence for TCR signalling. The study reveals two distinct scaling regimes in the time persistent survival probability density prole of these bonds, one dominated by thermal uctuations and the other associated with the TCR signalling. Analysis of the thermal fluctuation regime reveals a minimal contribution to the average time persistence calculation, that has an important biological implication when comparing the probabilistic models to experimental evidence. In cases where only a few statistics can be gathered from experimental conditions, the results are unlikely to match the probabilistic predictions. The results also identify a rescaling relationship between the thermal noise and the bond length, suggesting a recalibration of the experimental conditions, to adhere to this scaling relationship, will enable biologists to identify the start of the signalling regime for previously unobserved receptor:ligand bonds. Also, the regime associated with TCR signalling exhibits a universal decay rate for the persistence probability, that is independent of the bond length.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The calcitonin gene-related peptide (CGRP) receptor is a heterodimer of a family B G-protein-coupled receptor, calcitonin receptor-like receptor (CLR), and the accessory protein receptor activity modifying protein 1. It couples to Gs, but it is not known which intracellular loops mediate this. We have identified the boundaries of this loop based on the relative position and length of the juxtamembrane transmembrane regions 3 and 4. The loop has been analyzed by systematic mutagenesis of all residues to alanine, measuring cAMP accumulation, CGRP affinity, and receptor expression. Unlike rhodopsin, ICL2 of the CGRP receptor plays a part in the conformational switch after agonist interaction. His-216 and Lys-227 were essential for a functional CGRP-induced cAMP response. The effect of (H216A)CLR is due to a disruption to the cell surface transport or surface stability of the mutant receptor. In contrast, (K227A)CLR had wild-type expression and agonist affinity, suggesting a direct disruption to the downstream signal transduction mechanism of the CGRP receptor. Modeling suggests that the loop undergoes a significant shift in position during receptor activation, exposing a potential G-protein binding pocket. Lys-227 changes position to point into the pocket, potentially allowing it to interact with bound G-proteins. His-216 occupies a position similar to that of Tyr-136 in bovine rhodopsin, part of the DRY motif of the latter receptor. This is the first comprehensive analysis of an entire intracellular loop within the calcitonin family of G-protein-coupled receptor. These data help to define the structural and functional characteristics of the CGRP-receptor and of family B G-protein-coupled receptors in general. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

1. The calcitonin receptor-like receptor (CRLR) and specific receptor activity modifying proteins (RAMPs) together form receptors for calcitonin gene-related peptide (CGRP) and/or adrenomedullin in transfected cells. 2. There is less evidence that innate CGRP and adrenomedullin receptors are formed by CRLR/RAMP combinations. We therefore examined whether CGRP and/or adrenomedullin binding correlated with CRLR and RAMP mRNA expression in human and rat cell lines known to express these receptors. Specific human or rat CRLR antibodies were used to examine the presence of CRLR in these cells. 3. We confirmed CGRP subtype 1 receptor (CGRP(1)) pharmacology in SK-N-MC neuroblastoma cells. L6 myoblast cells expressed both CGRP(1) and adrenomedullin receptors whereas Rat-2 fibroblasts expressed only adrenomedullin receptors. In contrast we could not confirm CGRP(2) receptor pharmacology for Col-29 colonic epithelial cells, which, instead were CGRP(1)-like in this study. 4. L6, SK-N-MC and Col-29 cells expressed mRNA for RAMP1 and RAMP2 but Rat-2 fibroblasts had only RAMP2. No cell line had detectable RAMP3 mRNA. 5. SK-N-MC, Col-29 and Rat-2 fibroblast cells expressed CRLR mRNA. By contrast, CRLR mRNA was undetectable by Northern analysis in one source of L6 cells. Conversely, a different source of L6 cells had mRNA for CRLR. All of the cell lines expressed CRLR protein. Thus circumstances where CRLR mRNA is apparently absent by Northern analysis do not exclude the presence of this receptor. 6. These data strongly support CRLR, together with appropriate RAMPs as binding sites for CGRP and adrenomedullin in cultured cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The activation of phosphoinositide 3-hydroxykinase (P13K) is currently believed to represent the critical regulatory event which leads to the production of a novel intracellular signal. We have examined the control of this pathway by a number of cell-surface receptors in NG115-401L-C3 neuronal cells. Insulin-like growth factor-I stimulated the accumulation of 3-phosphorylated inositol lipids in intact cells and the appearance of P13K in antiphosphotyrosine-antibody-directed immunoprecipitates prepared from lysed cells, suggesting that P13K had been activated by a mechanism involving a protein tyrosine kinase. In contrast, P13K in these cells was not regulated by a variety of G-protein-coupled receptors, nerve growth factor acting via a low affinity receptor, or receptors for transforming growth factor-beta and interleukin-1. The receptor-specificity of P13K activation in these cells places significant constraints on the possible physiological function(s) of this pathway.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background Atherosclerosis is potentiated by stimulation of Toll-like receptors (TLRs), which serve to detect pathogen associated molecular patterns (PAMPs). However little is known of which PAMPs may be present in atheroma, or capable of stimulating inflammatory signalling in vascular cells. Materials and Methods DNA extracted from human carotid atheroma samples was amplified and sequenced using broad-range 16S gene specific primers to establish historical exposure to bacterial PAMPs. Responsiveness of primary human arterial and venous endothelial and smooth muscle cells to PAMPs specific for each of the TLRs was assessed by measurement of interleukin-8 secretion and E-selectin expression. Results Extracts of atheromatous tissue stimulated little or no signalling in TLR-transfected HEK-293 cells. However, sequencing of bacterial DNA amplified from carotid atheroma revealed the presence of DNA from 17 different bacterial genera, suggesting historical exposure to bacterial lipopeptide, lipopolysaccharide and flagellin. All cells examined were responsive to the ligands of TLR3 and TLR4, poly inosine:cytosine and lipopolysaccharide. Arterial cells were responsive to a wider range of PAMPs than venous cells, being additionally responsive to bacterial flagellin and unmethylated cytosine-phosphate-guanosine DNA motifs, the ligands of TLR5 and TLR9, respectively. Cells were generally unresponsive towards the ligands of human TLR7 and TLR8, loxoribine and single stranded RNA. Only coronary artery endothelial cells expressed TLR2 mRNA and responded to the TLR2 ligand Pam3CSK4. Conclusions Vascular cells are responsive to a relatively diverse range of TLR ligands and may be exposed, at least transiently, to ligands of TLR2, TLR4, TLR5 and TLR9 during the development of carotid atheroma.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transgenic BALB/c mice that express intrathyroidal human thyroid stimulating hormone receptor (TSHR) A-subunit, unlike wild-type (WT) littermates, develop thyroid lymphocytic infiltration and spreading to other thyroid autoantigens after T regulatory cell (Treg) depletion and immunization with human thyrotropin receptor (hTSHR) adenovirus. To determine if this process involves intramolecular epitope spreading, we studied antibody and T cell recognition of TSHR ectodomain peptides (A–Z). In transgenic and WT mice, regardless of Treg depletion, TSHR antibodies bound predominantly to N-terminal peptide A and much less to a few downstream peptides. After Treg depletion, splenocytes from WT mice responded to peptides C, D and J (all in the A-subunit), but transgenic splenocytes recognized only peptide D. Because CD4+ T cells are critical for thyroid lymphocytic infiltration, amino acid sequences of these peptides were examined for in silico binding to BALB/c major histocompatibility complex class II (IA–d). High affinity subsequences (inhibitory concentration of 50% < 50 nm) are present in peptides C and D (not J) of the hTSHR and mouse TSHR equivalents. These data probably explain why transgenic splenocytes do not recognize peptide J. Mouse TSHR mRNA levels are comparable in transgenic and WT thyroids, but only transgenics have human A-subunit mRNA. Transgenic mice can present mouse TSHR and human A-subunit-derived peptides. However, WT mice can present only mouse TSHR, and two to four amino acid species differences may preclude recognition by CD4+ T cells activated by hTSHR-adenovirus. Overall, thyroid lymphocytic infiltration in the transgenic mice is unrelated to epitopic spreading but involves human A-subunit peptides for recognition by T cells activated using the hTSHR.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To determine whether non-enterobacterial endotoxins, which are likely to constitute the majority of the circulating endotoxin pool, may stimulate coronary artery endothelial cell activation. Interleukin-8 secretion, monocyte adhesion, and E-selectin expression were measured in human umbilical vein endothelial cells (HUVECs) and coronary artery endothelial cells (HCAECs) challenged in vitro with highly purified endotoxins of common host colonisers Escherichia coli, Porphyromonas gingivalis, Pseudomonas aeruginosa, and Bacteroides fragilis. HCAECs but not HUVECs expressed Toll-like receptor (TLR)-2 and were responsive to non-enterobacterial endotoxins. Transfection of TLR-deficient HEK-293 cells with TLR2 or TLR4/MD2 revealed that while E. coli endotoxin utilised solely TLR4 to signal, the endotoxins, deglycosylated endotoxins (lipid-A), and whole heat-killed bacteria of the other species stimulated TLR2-but not TLR4-dependent cell-signalling. Blockade of TLR2 with neutralizing antibody prevented HCAEC activation by non-enterobacterial endotoxins. Comparison of each endotoxin with E. coli endotoxin in limulus amoebocyte lysate assay revealed that the non-enterobacterial endotoxins are greatly underestimated by this assay, which has been used in all previous studies to estimate plasma endotoxin concentrations. Circulating non-enterobacterial endotoxins may be an underestimated contributor to endothelial activation and atherosclerosis in individuals at risk of increased plasma endotoxin burden.