27 resultados para Sustained release

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antiretroviral entry inhibitors are now being considered as vaginally administered microbicide candidates for the prevention of the sexual transmission of human immunodeficiency virus. Previous studies testing the entry inhibitors maraviroc and CMPD167 in aqueous gel formulations showed efficacy in the macaque challenge model, although protection was highly dependent on the time period between initial gel application and subsequent challenge. In this paper, we describe the sustained release of maraviroc and CMPD167 from matrix-type silicone elastomer vaginal rings both in vitro and in vivo. Both inhibitors were released continuously during 28 days from rings in vitro at rates of 100 to 2,500 µg/day. In 28-day pharmacokinetic studies in rhesus macaques, the compounds were measured in the vaginal fluid and vaginal tissue; steady-state fluid concentrations were ~10(6)-fold greater than the 50% inhibitory concentrations (IC(50)s) for simian human immunodeficiency virus 162P3 inhibition in macaque lymphocytes in vitro. Plasma concentrations for both compounds were very low. The pretreatment of macaques with Depo-Provera (DP), which is commonly used in macaque challenge studies, was shown to significantly modify the biodistribution of the inhibitors but not the overall amount released. Vaginal fluid and tissue concentrations were significantly decreased while plasma levels increased with DP pretreatment. These observations have implications for designing macaque challenge experiments and also for ring performance during the human female menstrual cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Post-operative infections resulting from total hip arthroplasty are caused by bacteria such as Staphylococcus aureus and Pseudomonas aeruginosa entering the wound perioperatively or by haemetogenous spread from distant loci of infection. They can endanger patient health and require expensive surgical revision procedures. Gentamicin impregnated poly (methyl methacrylate) bone cement is traditionally used for treatment but is often removed due to harbouring bacterial growth, while bacterial resistance to gentamicin is increasing. The aim of this work was to encapsulate the antibiotics vancomycin, ciprofloxacin and rifampicin within sustained release microspheres composed of the biodegradable polymer poly (dl-lactide-co-glycolide) [PLCG] 75:25. Topical administration to the wound in hydroxypropylmethylcellulose gel should achieve high local antibiotic concentrations while the two week in vivo half life of PLCG 75:25 removes the need for expensive surgical retrieval operations. Unloaded and 20% w/w antibiotic loaded PLCG 75:25 microspheres were fabricated using a Water in Oil emulsification with solvent evaporation technique. Microspheres were spherical in shape with a honeycomb-like internal matrix and showed reproducible physical properties. The kinetics of in vitro antibiotic release into newborn calf serum (NCS) and Hank's balanced salt solution (HBSS) at 37°C were measured using a radial diffusion assay. Generally, the day to day concentration of each antibiotic released into NCS over a 30 day period was in excess of that required to kill St. aureus and Ps. auruginosa. Only limited microsphere biodegradation had occurred after 30 days of in vitro incubation in NCS and HBSS at 37°C. The moderate in vitro cytotoxicity of 20% w/w antibiotic loaded microspheres to cultured 3T3-L1 cells was antibiotic induced. In conclusion, generated data indicate the potential for 20% w/w antibiotic loaded microspheres to improve the present treatment regimens for infections occurring after total hip arthroplasty such that future work should focus on gaining industrial collaboration for commercial exploitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antisense oligodeoxynucleotides can selectively inhibit individual gene expression provided they remain stable at the target site for a sufficient period of time. Thus, the efficacy of antisense oligodeoxynucleotides may be improved by employing a sustained release delivery system which would protect from degradation by nucleases whilst delivering the nucleic acid in a controlled manner to the site of action. Biodegradable polymer films and micro spheres were evaluated as delivery devices for the oligodeoxynucleotides and ribozymes. Polymers such as polylactide, polyglycolide, polyhydroxybutyrate and polyhydroxyvalerate were used due to their biocompatability and non toxic degradation products. Release profiles of antisense nucleic acids from films over 28 days was biphasic, characterised by an initial burst release during the first 48 hours followed by a more sustained release. Release from films of longer antisense nucleic acids was slower compared to shorter nucleic acids. Backbone type also affected release, although to a lesser extent than length. Total release of the nucleic acids is dependent upon polymer degradation, no degradation of the polymer films was evident over the 28 day period, due to the high molecular weight and crystallinity of the polymers required to make solvent cast films. Backbone length and type did not affect release from microspheres, release was generally faster than from films, due to the increased surface area, and low molecular weight polymers which showed signs of degradation over the release period, resulting in a triphasic release profile. An increase in release was observed when sphere size and polymer molecular weight were decreased. The polymer entrapped phosphodiester oligodeoxynucleotides and ribozymes had enhanced stability compared to free oligodeoxynucleotides and ribozymes when incubated in serum. The released nucleic acids were still capable of hybridising to their target sequence, indicating that the fabrication processes did not adversely effect the properties of the antisense nucleic acids. Oligodeoxynucleotides loaded in 2μm spheres had a 10 fold increase in macrophage association compared to free oligodeoxynucleotides. Fluorescent microscopy indicates that the polymer entrapped oligodeoxynucleotide is concentrated inside the cell, whereas free oligodeoxynucleotides are concentrated at the cell membrane. Biodegradable polymers can reduce the limitations of antisense therapy and thus offer a potential therapeutic advantage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bioequivalence of sustained release theophylline formulations, marketed in the United Kingdom, has been investigated in relation to the co-administration of food in both single dose and steady state volunteer studies. The effect of food on pharmacokinetic parameters and their clinical relevance was researched. Experimentation using drug induced modification of gastric motility to ascertain the component influences of the rate of gastric emptying on the absorption of theophylline from sustained release formulations was conducted. Prolongation of time to maximum plasma theophylline concentration by food reported in the literature and its clinical importance was investigated in once daily compared with twice daily administration of sustained release theophylline formulations and smoking habit. The correlation between saliva and plasma theophylline concentrations as a means of developing a non-invasive sampling techniques was examined. Data obtained from in vitro dissolution studies was compared with in vivo results. This thesis has shown no significant differences occurred in the pharmacokinetic parameters measured between sustained release formulations available in the United Kingdom. The investigations into the influence of food on prolongation of time to maximum plasma theophylline concentration and other measured pharmacokinetic parameters demonstrated no important pharmacokinetic or clinical effects. Smoking adults taking sustained release theophylline formulations had similar drug clearances to those reported in the literature for smokers taking plain uncoated theophylline formulations. KEY WORDS Bioequivalence Theophylline Sustained Release Food Pharmacokinetics RONALD PURKISS SUBMITTED FOR

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Polyvinyl alcohol (PVA) is a successful tear film stabiliser and is widely used in comfort drops and some soft contact lens materials. A PVA-containing lens, nelfilcon A has been modified to include additional (non-functional) PVA in order to provide improved comfort. This study aims to examine the clinical performance of this nelfilcon A lens with AquaRelease™ (AquaRelease). Methods: Two contralateral, investigator masked, open label, subjective and objective evaluations were conducted. The first examined the effect of adding increased molecular weight PVA to nelfilcon A (n = 5), and the second compared this AquaRelease lens to ocufilcon B (n = 34). The principal measures were non-invasive break-up time (NIBUT) and subjective comfort, which were assessed at the beginning and end of a week of daily wear, and three times throughout 1 day at 8, 12 and 16 h. Results: All subjects successfully completed the daily wearing schedule of 16 h. On initial insertion, subjective comfort and NIBUT improved for AquaRelease than original nelfilcon A lenses (p < 0.05). Initial comfort was better for AquaRelease compared to ocufilcon B lenses (p = 0.01); however, NIBUT was not statistically different (11.7 ± 15.6 s versus 8.4 ± 6.8 s; p = 0.26). Subjective comfort decreased with time (p < 0.001), but there was no significant difference between AquaRelease and ocufilcon B lenses (p = 0.16). NIBUT was not significantly affected by time (p = 0.56) or between lenses (p = 0.33). At the end of a weeks' wear, subjective initial, end-of-day, overall comfort and vision were rated significantly better with AquaRelease than ocufilcon B (p < 0.01). Conclusions: Release of additional non-functionalised PVA from the nelfilcon A lenses appears to enhance comfortable contact lens wear. © 2006 British Contact Lens Association.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The aim of this work was to optimize biodegradable polyester poly(glycerol adipate-co-ω-pentadecalactone), PGA-co-PDL, microparticles as sustained release (SR) carriers for pulmonary drug delivery. Methods: Microparticles were produced by spray drying directly from double emulsion with and without dispersibility enhancers (L-arginine and L-leucine) (0.5-1.5%w/w) using sodium fluorescein (SF) as a model hydrophilic drug. Results: Spray-dried microparticles without dispersibility enhancers exhibited aggregated powders leading to low fine particle fraction (%FPF) (28.79±3.24), fine particle dose (FPD) (14.42±1.57 μg), with a mass median aerodynamic diameter (MMAD) 2.86±0.24 μm. However, L-leucine was significantly superior in enhancing the aerosolization performance ( L-arginine:%FPF 27.61±4.49-26.57±1.85; FPD 12.40±0.99-19.54±0.16 μg and MMAD 2.18±0.35-2. 98±0.25 μm, L-leucine:%FPF 36.90±3.6-43.38±5. 6; FPD 18.66±2.90-21.58±2.46 μg and MMAD 2.55±0.03-3. 68±0.12 μm). Incorporating L-leucine (1.5%w/w) reduced the burst release (24.04±3.87%) of SF compared to unmodified formulations (41.87±2.46%), with both undergoing a square root of time (Higuchi's pattern) dependent release. Comparing the toxicity profiles of PGA-co-PDL with L-leucine (1.5%w/w) (5 mg/ml) and poly(lactide-co-glycolide), (5 mg/ml) spray-dried microparticles in human bronchial epithelial 16HBE14o-cell lines, resulted in cell viability of 85.57±5.44 and 60.66±6.75%, respectively, after 72 h treatment. Conclusion:The above data suggest that PGA-co-PDL may be a useful polymer for preparing SR microparticle carriers, together with dispersibility enhancers, for pulmonary delivery. © Springer Science+Business Media, LLC 2011.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The controlled co-delivery of multiple agents to the lung offers potential benefits to patients. This study investigated the preparation and characterisation of highly respirable spray-dried powders displaying the sustained release of two chemically distinct therapeutic agents. Spray-dried powders were produced from 30% (v/v) aqueous ethanol formulations that contained hydrophilic (terbutaline sulphate) and hydrophobic (beclometasone dipropionate) model drugs, chitosan (as a drug release modifier) and leucine (aerosolisation enhancer). The influence of chitosan molecular weight on spray-drying thermal efficiency, aerosol performance and drug release profile was investigated. Resultant powders were physically characterised: with in vitro aerosolisation performance and drug release profile investigated by the Multi-Stage Liquid Impinger and modified USP II dissolution apparatus, respectively. It was found that increased chitosan molecular weight gave increased spray-drying thermal efficiency. The powders generated were of a suitable size for inhalation—with emitted doses over 90% and fine particle fractions up to 72% of the loaded dose. Sustained drug release profiles were observed in dissolution tests for both agents: increased chitosan molecular weight associated with increased duration of drug release. The controlled co-delivery of hydrophilic and hydrophobic entities underlines the capability of spray drying to produce respirable particles with sustained release for delivery to the lung. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Antisense technology is a novel drug discovery method, which provides an essential tool for directly using gene sequence information to rationally design specific inhibitions of mRNA, to treat a wide range of diseases. The efficacy of naked oligodeoxynucleotides (ODNs) is relatively short lived due to rapid degradation in vivo. The entrapment of ODNs within biodegradable sustained-release delivery systems may improve ODN stability and reduce dose required for efficacy. Biodegradable polymer microspheres were evaluated as delivery devices for ODNs and ribozymes. Poly(lactide-co-glycolide) polymers were used due to their biocompatibility and non toxic degradation products. Microspheres were prepared using a double emulsion-deposition method and the formulations characterised. In vitro release profiles were characterised by an initial burst effect during the first 48 hours of release followed by a more sustained release. The release profiles were influenced by microsphere size, copolymer molecular weight, copolymer ratio, ODN loading, ODN length, and ODN chemistry. The serum stability of ODNs was significantly improved when entrapped within polymer microspheres. The cellular association of ODNs entrapped within small spheres (1-2μm) was improved by approximately 20-fold in A431 carcinoma cells compared with free ODNs. Fluorescence microscopy studies showed a more diffuse subcellular distribution when delivered as a microsphere formulation compared with free ODNs, which exhibited the characteristic punctate periplasmic distribution. For in vivo evaluation, polymer microspheres containing fluorescently-labelled ODNs were stereo-taxically administered to the neostriatum of the rat brain. Free ODN resulted in a punctate cellular distribution after 24 hours. In comparison ODN delivered using polymer microspheres were intensely visible in cells 48 hours post administration, and fluorescence appeared to be diffuse covering both cytosolic and nuclear regions. Whole-body autoradiography was also used to evaluate the biodistribution of free tritium labelled ODN and ODN entrapped microspheres, following subcutaneous administration to Balb-C mice. Polymer entrapped ODN gave a similar biodistribution to free ODN. Free ODN was distributed within 24 hours, whereas polymer released ODN was observed still presented in organs and at the site of administration seven days post administration.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Increasingly complicated medication regimens associated with the necessity of the repeated dosing of multiple agents used in treating pulmonary disease has been shown to compromise both disease management and patient convenience. In this study the viability of spray drying to introduce controlled release vectors into dry powders for inhalation was investigated. The first experimental section highlights the use of leucine in producing highly respirable spray dried powders, with in vitro respirable fractions (Fine particle fraction, FPF: F < 5µm) exceeding 80% of the total dose. The second experimental chapter introduces the biocompatible polymer chitosan (mw 190 – 310 kDa) to formulations containing leucine with findings of increased FPF with increasing leucine concentration (up to 82%) and the prolonged release of the active markers terbulataline sulfate (up to 2 hours) and beclometasone dipropionate (BDP: up to 12 hours) with increasing chitosan molecular weight. Next, the thesis details the use of a double emulsion format in delivering the active markers salbutamol sulfate and BDP at differing rates; using the polymers poly-lactide co-glycolide (PLGA 50:50 and PLGA 75:25) and/or chitosan incorporating leucine as an aerosolisation enhancer the duration of in vitro release of both agents reaching 19 days with FPF exceeding 60%. The final experimental chapter involves dual aqueous and organic closed loop spray drying to create controlled release dry powders for inhalation with in vitro sustained release exceeding 28 days and FPF surpassing 55% of total loaded dose. In conclusion, potentially highly respirable sustained release dry powders for inhalation have been produced by this research using the polymers chitosan and/or PLGA as drug release modifiers and leucine as an aerosolisation enhancer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis is concerned with the role of /3-cell cytoskeletal proteins in the mechanism of insulin release from islets of experimental animals, the Aston obese diabetic hyperglycaemic (ob/ob) mouse and their lean littermates and the cultural insulin secreting /?-cell lines, HIT-TT5 and RINm5F. Investigations were carried out into the glucose induced insulin response of the lean and obese mouse islets and HIT-TI5 cells and the D-glyceraldehyde response of RINm5F cells using a static incubation system. Colchicine was found to inhibit insulin release from both lean and obese mouse islets more significantly than cultured TTT-TI5 and RINm5F cells. (Colchicine pre-treatment also inhibited the second phase of insulin release from perifused lean mouse islets and HIT-TI5 cells). Cytocha-lasin B, used to investigate the role of the microfilamentous system in the mechanism of insulin release enhanced insulin release from both lean and obese mouse islets to a significantly greater degree than that from cultured HIT-TI5 and RINm5F cells. Pre-treatment of isolated lean and obese mouse islets and cultured /?-cells with a combination of colchicine and cytochalasin B significantly reduced the insulin response of the HIT-TI5 and RINm5F cells compared with the control values suggesting that intact microtubules are more important for the sustained release of insulin than the microfilamentous system. However, the response was not so clearly defined with the lean and obese mouse islets. Tubulin was separated from the extracts of lean mouse islets and the HIT-TI5 and RINm5F cells and actin was separated from all of the cell types including the obese mouse islets by SDS- polyacrylamide electrophoresis. A tubulin radioimmunoassay and a colchicine binding assay were developed to measure the tubulin content of lean and obese mouse islets, and the shift between the proportions of tubulin dimers and polymerized tubulin under stimulatory and non-stimulatory conditions. The assay methods developed were not prone to be accurate, sensitive and precise but gave some indication of the shift from unpolymerised to polymerised tubulin during glucose stimulated insulin release. These studies show that microtubules do play a fundamental role in the mechanism of insulin release from both islets and cultured HIT-TI5 and RINm5F cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The sustained delivery of multiple agents to the lung offers potential benefits to patients. This study explores the preparation of highly respirable dual-loaded spray-dried double emulsions. Spray-dried powders were produced from water-in-oil-in-water (w/o/w) double emulsions, containing salbutamol sulphate and/or beclometasone dipropionate in varying phases. The double emulsions contained the drug release modifier polylactide co-glycolide (PLGA 50 : 50) in the intermediate organic phase of the original micro-emulsion and low molecular weight chitosan (Mw<190 kDa: emulsion stabilizer) and leucine (aerosolization enhancer) in the tertiary aqueous phase. Following spray-drying resultant powders were physically characterized: with in vitro aerosolization performance and drug release investigated using a Multi-Stage Liquid Impinger and modified USP II dissolution apparatus, respectively. Powders generated were of a respirable size exhibiting emitted doses of over 95% and fine particle fractions of up to 60% of the total loaded dose. Sustained drug release profiles were observed during dissolution for powders containing agents in the primary aqueous and secondary organic phases of the original micro-emulsion; the burst release of agents was witnessed from the tertiary aqueous phase. The novel spray-dried emulsions from this study would be expected to deposit and display sustained release character in the lung.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study investigates the feasibility of using two types of carbomer (971 and 974) to prepare inhalable dry powders that exhibit modified drug release properties. Powders were prepared by spray-drying formulations containing salbutamol sulphate, 20-50% w/w carbomer as a drug release modifier and leucine as an aerosolization enhancer. Following physical characterization of the powders, the aerosolization and dissolution properties of the powders were investigated using a Multi-Stage Liquid Impinger and a modified USP II dissolution apparatus, respectively. All carbomer 974-modified powders and the 20% carbomer 971 powder demonstrated high dispersibility, with emitted doses of at least 80% and fine particle fractions of approximately 40%. The release data indicated that all carbomer-modified powders displayed a sustained release profile, with carbomer 971-modified powders obeying first order kinetics, whereas carbomer 974-modified powders obeyed the Higuchi root time kinetic model; increasing the amount of carbomer 971 in the formulation did not extend the duration of drug release, whereas this was observed for the carbomer 974-modified powders. These powders would be anticipated to deposit predominately in the lower regions of the lung following inhalation and then undergo delayed rather than instantaneous drug release, offering the potential to reduce dosing frequency and improve patient compliance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ultimate aim of this project was to design new biomaterials which will improve the efficiency of ocular drug delivery systems. Initially, it was necessary to review the information available on the nature of the tear fluid and its relationship with the eye. An extensive survey of the relevant literature was made. There is a common belief in the literature that the ocular glycoprotein, mucin, plays an important role in tear film stability, and furthermore, that it exists as an adherent layer covering the corneal surface. If this belief is true, the muco-corneal interaction provides the ideal basis for the development of sustained release drug delivery. Preliminary investigations were made to assess the ability of mucin to adhere to polymer surfaces. The intention was to develop a synthetic model which would mimic the supposed corneal/mucin interaction. Analytical procedures included the use of microscopy (phase contrast and fluorescence), fluorophotometry, and mucin-staining dyes. Additionally, the physical properties of tears and tear models were assessed under conditions mimicking those of the preocular environment, using rheological and tensiometric techniques. The wetting abilities of these tear models and opthalmic formulations were also investigated. Tissue culture techniques were employed to enable the surface properties of the corneal surface to be studied by means of cultured corneal cells. The results of these investigations enabled the calculation of interfacial and surface characteristics of tears, tear models, and the corneal surface. Over all, this work cast doubt on the accepted relationship of mucin with the cornea. A corneal surface model was designed, on the basis of the information obtained during this project, which would possess similar surface chemical properties (i.e. would be biomimetic) to the more complex original. This model, together with the information gained on the properties of tears and solutions intended for ocular instillation, could be valuable in the design of drug formulations with enhanced ocular retention times. Furthermore, the model itself may form the basis for the design of an effective drug-carrier.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Antisense oligodeoxynucleotides can selectively inhibit gene expression provided they are delivered to their target site successfully for a sufficient duration. Biodegradable microspheres have previously been developed for the potential systemic delivery of antisense oligodeoxynucleotides and offer an excellent strategy for central administration of antisense oligodeoxynucleotides, providing a sustained-release delivery system. Biodegradable microspheres were formulated to entrap antisense oligodeoxynucleotides for stereotaxic implantation into site-specific regions of the rat brain.Release profiles of antisense oligodeoxynucleotides from biodegradable microspheres over 56 days that were triphasic were observed with high molecular weight polymers. Antisense oligodeoxynucleotides loaded into microspheres (1-10μm) had a five-fold increase in cellular association with glial and neuronal cells compared to the naked molecule, which was partially due to a greater cellular accumulation as observed by a slower efflux profile. In vivo distribution studies of antisense oligodeoxynucleotides demonstrated that the use of microspheres provided a sustained-release over more than 2 days compared to 12 hours of the naked molecule. Efficacy of antisense oligodeoxynucleotides was demonstrated during locomotor activity investigations, which significantly reduced cocaine-induced locomotor activity, where no efficacy was demonstrated with microspheres, possibly attributed to antisense loading and measurements being taken during a lag phase of antisense oligodeoxynucleotide release. Biodegradable microspheres can be delivered site-specifically into the brain and provide sustained-release of antisense oligodeoxynucleotides, offering the potential of in vivo efficacy in these reagents in the brain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glioblastoma Multiforme (GBM) is a highly malignant form of brain cancer for which there is currently no effective cure. Consequently, developing new therapies and elucidating effective targets is crucial for this fatal disease. In recent years, DNA enzymes, deoxyribonucleic acid molecules with enzymatic activity, have emerged. In the same manner as ribozymes, DNA enzymes are able to effect cleavage of RNA in a sequence-specific manner, and operate with catalytic efficiency. In this study, two DNA enzymes were designed to target the template region of human telomerase RNA (hTR), utilising the 10-23 and 8-17 catalytic motifs elucidated by Santoro and Joyce (1997). Telomerase is an RNA-dependent DNA polymerase, which stabilises telomere lengths by adding hexameric repeats (TTAGGG in humans) to chromosome termini, thus preventing the telomere shortening that usually occurs during mitotic cell division. Telomerase activity, whilst absent in normal somatic tissues, is present in almost 90% of all tumours. Thus, there is speculation that telomerase may be the much sought universal target for therapeutic intervention in cancer. In vitro cleavage assays showed both DNA enzymes to be catalytically competent. Unmodified phosphodiester (PO) backbone DNA enzymes were rapidly degraded in the presence of serum, with a half-life of 10 minutes. The common approach of introducing phosphorothioate (PS) linkages was used in an effort to overcome this instability. As a result of concurrent activity and stability studies on the DNA enzymes with various numbers of PS linkages, the DNA enzymes with a PO core and PS arms were chosen for use in further cell work. The cleavage activity of both was shown to be specific and affected by temperature, pH, MgCI2 concentration and enzyme concentration. Both DNA enzyme motifs reduced telomerase activity in cell lysates, as assessed by the telomerase repeat amplification protocol (TRAP) with an IC50 of 100nM. DNA enzymes being polyanionic molecules do not readily cross biological barriers. Cellular association of naked DNA enzyme was inefficient at less than 2%. Cellular delivery of the DNA enzymes was effectively improved using commercial cationic lipid formulations. However, the lipid-mediated delivery of DNA enzymes to U87-MG cells over a 4-hour period did not significantly inhibit cell proliferation compared to controls. This is possibly due to an expected lag period between the inhibition of telomere maintenance and cell death. Therefore, biodegradable polymer microspheres were investigated as a potential delivery option for prolonged and sustained delivery. In vitro release profiles showed that after an initial burst, sustained release of DNA enzymes was observed over 35 days. Finally, the efficacy and specificity of the DNA enzymes were demonstrated in a luciferase based reporter assay. Specific inhibition of luciferase expression was displayed at 10nM. Thus DNA enzymes have potential against endogenous cellular targets.