2 resultados para Sustainable Urban and Transportation Development
em Aston University Research Archive
Resumo:
The current rate of global biodiversity loss led many governments to sign the international agreement ‘Halting Biodiversity Loss by 2010 and beyond’ in 2001. The UK government was one of these and has a number of methods to tackle this, such as: commissioning specific technical guidance and supporting the UK Biodiversity Acton Plan (BAP) targets. However, by far the most effective influence the government has upon current biodiversity levels is through the town planning system. This is due to the control it has over all phases of a new development scheme’s lifecycle.There is an increasing myriad of regulations, policies and legislation, which deal with biodiversity protection and enhancement across the hierarchical spectrum: from the global and European level, down to regional and local levels. With these drivers in place, coupled with the promotion of benefits and incentives, increasing biodiversity value ought to be an achievable goal on most, if not all development sites. However, in the professional world, this is not the case due to a number of obstructions. Many of these tend to be ‘process’ barriers, which are particularly prevalent with ‘urban’ and ‘major’ development schemes, and is where the focus of this research paper lies.The paper summarises and discusses the results of a questionnaire survey, regarding obstacles to maximising biodiversity enhancements on major urban development schemes. The questionnaire was completed by Local Government Ecologists in England. The paper additionally refers to insights from previous action research, specialist interviews, and case studies, to reveal the key process obstacles.Solutions to these obstacles are then alluded to and recommendations are made within the discussion.
Resumo:
Concerns over the economics of proven fossil fuel reserves, in concert with government and public acceptance of the anthropogenic origin of rising CO2 emissions and associated climate change from such combustible carbon, are driving academic and commercial research into new sustainable routes to fuel and chemicals. The quest for such sustainable resources to meet the demands of a rapidly rising global population represents one of this century’s grand challenges. Here, we discuss catalytic solutions to the clean synthesis of biodiesel, the most readily implemented and low cost, alternative source of transportation fuels, and oxygenated organic molecules for the manufacture of fine and speciality chemicals to meet future societal demands.