4 resultados para Surface electromyographic measure
em Aston University Research Archive
Resumo:
The impact of whole body vibrations (vibration stimulus mechanically transferred to the body) on muscular activity and neuromuscular response has been widely studied but without standard protocol and by using different kinds of exercises and parameters. In this study, we investigated how whole body vibration treatments affect electromyographic signal of rectus femoris during static and dynamic squat exercises. The aim was the identification of squat exercise characteristics useful to maximize neuromuscular activation and hence progress in training efficacy. Fourteen healthy volunteers performed both static and dynamic squat exercises without and with vibration treatments. Surface electromyographic signals of rectus femoris were recorded during the whole exercise and processed to reduce artifacts and to extract root mean square values. Paired t-test results demonstrated an increase of the root mean square values (p<0.05) in both static and dynamic squat exercises with vibrations respectively of 63% and 108%. For each exercise, subjects gave a rating of the perceived exertion according to the Borg's scale but there were no significant changes in the perceived exertion rate between exercises with and without vibration. Finally, results from analysis of electromyographic signals identified the static squat with WBV treatment as the exercise with higher neuromuscular system response. © 2012 IEEE.
Resumo:
Surface compositional changes in GaAs due to RF plasmas of different gases have been investigated by XPS and etch rates were measured using AFM. Angular Resolved XPS (ARXPS) was also employed for depth analysis of the composition of the surface layers. An important role in this study was determination of oxide thickness using XPS data. The study of surface - plasma interaction was undertaken by correlating results of surface analysis with plasma diagnosis. Different experiments were designed to accurately measure the BEs associated with the Ga 3d, Ga 2P3/2 and LMM peaks using XPS analysis and propose identification in terms of the oxides of GaAs. Along with GaAs wafers, some reference compounds such as metallic Ga and Ga2O3 powder were used. A separate study aiming the identification of the GaAs surface oxides formed on the GaAs surface during and after plasma processing was undertaken. Surface compositional changes after plasma treatment, prior to surface analysis are considered, with particular reference to the oxides formed in the air on the activated surface. Samples exposed to ambient air for different periods of time and also to pure oxygen were analysed. Models of surface processes were proposed for explanation of the stoichiometry changes observed with the inert and reactive plasmas used. In order to help with the understanding of the mechanisms responsible for surface effects during plasma treatment, computer simulation using SRIM code was also undertaken. Based on simulation and experimental results, models of surface phenomena are proposed. Discussion of the experimental and simulated results is made in accordance with current theories and published results of different authors. The experimental errors introduced by impurities and also by data acquisition and processing are also evaluated.
Resumo:
It has often been found that corneal astigmatism exceeds the amount exhibited by the eye as a whole. This difference is usually referred to as residual astigmatism. Scrutiny of the studies of corneal astigmatismreveal that what has actually been measured is the astigmatic contributionof the anterior corneal surface alone. This anterior surface is easily measured whereas measurement of the posterior corneal surface is much more difficult. A method was therefore developed to measure the radius and toricity of the posterior corneal surface. The method relies upon photography of the first and second Purkinje images in three fixed meridians. Keratometry, comparison of anterior and posterior corneal Purkinje images and pachometricdata were applied to three meridional analysis equations, allowing the posterior corneal surface to be described in sphero-cylindrical form. Measurements were taken from 80 healthy subjects from two distinct age groups. The first consisted of 60 young subjects, mean age 22.04 years and the second consisted of 20 old subjects, mean age 74.64 years. The young group consisted of 28 myopes, 24 emmetropes and 8 hyperopes. The old group consisted of 6 myopes and 14 hyperopes. There was an equal number of males and females in each group. These groupings allowed the study of the effects of age, ametropia and gender on the posterior corneal toricity. The effect of the posterior corneal surface on residual astigmatism was assessed and was found to cause an overall reduction. This reduction was due primarily to the posterior corneal surface being consistently steeper relative to the anterior surface in the vertical meridian compared to the horizontal meridian.
Resumo:
Purpose. To review the evolution in ocular temperature measurement during the last century and examine the advantages and applications of the latest noncontact techniques. The characteristics and source of ocular surface temperature are also discussed. Methods. The literature was reviewed with regard to progress in human thermometry techniques, the parallel development in ocular temperature measurement, the current use of infrared imaging, and the applications of ocular thermography. Results. It is widely acknowledged that the ability to measure ocular temperature accurately will increase the understanding of ocular physiology. There is a characteristic thermal profile across the anterior eye, in which the central area appears coolest. Ocular surface temperature is affected by many factors, including inflammation. In thermometry of the human eye, contact techniques have largely been superseded by infrared imaging, providing a noninvasive and potentially more accurate method of temperature measurement. Ocular thermography requires high resolution and frame rate: features found in the latest generation of cameras. Applications have included dry eye, contact lens wear, corneal sensitivity, and refractive surgery. Conclusions. Interest in the temperature of the eye spans almost 130 years. It has been an area of research largely driven by prevailing technology. Current instrumentation offers the potential to measure ocular surface temperature with more accuracy, resolution, and speed than previously possible. The use of dynamic ocular thermography offers great opportunities for monitoring the temperature of the anterior eye. © 2005 Contact Lens Association of Ophthalmologists, Inc.