12 resultados para Suprathreshold

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied the relationship between the decline in sensitivity that occurs with eccentricity for stimuli of different spatial scale defined by either luminance (LM) or contrast (CM) modulation. We show that the detectability of CM stimuli declines with eccentricity in a spatial frequency-dependent manner, and that the rate of sensitivity decline for CM stimuli is roughly that expected from their 1st order carriers, except, possibly, at finer scales. Using an equivalent noise paradigm, we investigated the possible reasons for why the foveal sensitivity for detecting LM and CM stimuli differs as well as the reason why the detectability of 1st order stimuli declines with eccentricity. We show the former can be modeled by an increase in internal noise whereas the latter involves both an increase in internal noise and a loss of efficiency. To encompass both the threshold and suprathreshold transfer properties of peripheral vision, we propose a model in terms of the contrast gain of the underlying mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies have suggested separate channels for detection of first-order luminance modulations (LM) and second-order modulations of the local amplitude (AM) of a texture. Mixtures of LM and AM with different phase relationships appear very different: in-phase compounds (LM + AM) look like 3-D corrugated surfaces, while out-of-phase compounds (LM - AM) appear flat and/or transparent. This difference may arise because the in-phase compounds are consistent with multiplicative shading, while the out-of-phase compounds are not. We investigated the role of these modulation components in surface depth perception. We used a textured background with thin bars formed by local changes in luminance and/or texture amplitude. These stimuli appear as embossed surfaces with wide and narrow regions. Keeping the AM modulation depth fixed at a suprathreshold level, we determined the amount of luminance contrast required for observers to correctly indicate the width (narrow or wide) of 'raised' regions in the display. Performance (compared to the LM-only case) was facilitated by the presence of AM, but, unexpectedly, performance for LM - AM was as good as for LM + AM. Thus, these results suggest that there is an interaction between first-order and second-order mechanisms during depth perception based on shading cues, but the phase dependence is not yet understood.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies have suggested separate channels for the detection of first-order luminance (LM) and second-order modulations of the local amplitude (AM) of a texture (Schofield and Georgeson, 1999 Vision Research 39 2697 - 2716; Georgeson and Schofield, 2002 Spatial Vision 16 59). It has also been shown that LM and AM mixtures with different phase relationships are easily separated in identification tasks, and (informally) appear very different with the in-phase compound (LM + AM), producing the most realistic depth percept. We investigated the role of these LM and AM components in depth perception. Stimuli consisted of a noise texture background with thin bars formed as local increments or decrements in luminance and/or noise amplitude. These stimuli appear as embossed surfaces with wide and narrow regions. When luminance and amplitude changes have the same sign and magnitude (LM + AM) the overall modulation is consistent with multiplicative shading, but this is not so when the two modulations have opposite sign (LM - AM). Keeping the AM modulation depth fixed at a suprathreshold level, we determined the amount of luminance contrast required for observers to correctly indicate the width (narrow or wide) of raised regions in the display. Performance (compared to the LM-only case) was facilitated by the presence of AM, but, unexpectedly, performance for LM - AM was even better than for LM + AM. Further tests suggested that this improvement in performance is not due to an increase in the detectability of luminance in the compound stimuli. Thus, contrary to previous findings, these results suggest the possibility of interaction between first-order and second-order mechanisms in depth perception.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The initial image-processing stages of visual cortex are well suited to a local (patchwise) analysis of the viewed scene. But the world's structures extend over space as textures and surfaces, suggesting the need for spatial integration. Most models of contrast vision fall shy of this process because (i) the weak area summation at detection threshold is attributed to probability summation (PS) and (ii) there is little or no advantage of area well above threshold. Both of these views are challenged here. First, it is shown that results at threshold are consistent with linear summation of contrast following retinal inhomogeneity, spatial filtering, nonlinear contrast transduction and multiple sources of additive Gaussian noise. We suggest that the suprathreshold loss of the area advantage in previous studies is due to a concomitant increase in suppression from the pedestal. To overcome this confound, a novel stimulus class is designed where: (i) the observer operates on a constant retinal area, (ii) the target area is controlled within this summation field, and (iii) the pedestal is fixed in size. Using this arrangement, substantial summation is found along the entire masking function, including the region of facilitation. Our analysis shows that PS and uncertainty cannot account for the results, and that suprathreshold summation of contrast extends over at least seven target cycles of grating. © 2007 The Royal Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of fixation points (FPs) in visual psychophysics is common practice, though the costs and benefits of different fixation regimens have not been compared. Here we investigate the influence of several different types of FP configurations on the contrast detection of patches of sine-wave gratings. We find that for small targets (1°), the addition of a superimposed central FP can increase thresholds by a factor of 1.3 (2.5 dB) in comparison with no FP, and a factor of 1.5 (3.6 dB) in comparison with FPs that surround the target. These results are consistent with (i) a suppressive influence on the central region of the target from a central FP, and (ii) facilitatory influences from surrounding FPs. Our analysis of the slope of the psychometric function suggests that the facilitatory influence is not due to reduction of uncertainty. Plausible candidate causes for the facilitation are: (i) sensory interactions, (ii) aids to ocular accommodation and convergence, (iii) a reduction in eye-movements and (iv) more accurate placement of the observer’s window of attention. Masking by a central FP is not found for the suprathreshold task of contrast discrimination, suggesting that the masking effects of pedestal and FP do not combine linearly. This means that estimates of the level of masking produced by a contrast pedestal can depend on the details of the fixation point.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is very well known that contrast detection thresholds improve with the size of a grating-type stimulus, but it is thought that the benefit of size is abolished for contrast discriminations well above threshold (e.g., Legge, G. E., & Foley, J. M. (1980)]. Here we challenge the generality of this view. We performed contrast detection and contrast discrimination for circular patches of sine wave grating as a function of stimulus size. We confirm that sensitivity improves with approximately the fourth-root of stimulus area at detection threshold (a log-log slope of -0.25) but find individual differences (IDs) for the suprathreshold discrimination task. For several observers, performance was largely unaffected by area, but for others performance first improved (by as much as a log-log slope of -0.5) and then reached a plateau. We replicated these different results several times on the same observers. All of these results were described in the context of a recent gain control model of area summation [Meese, T. S. (2004)], extended to accommodate the multiple stimulus sizes used here. In this model, (i) excitation increased with the fourth-root of stimulus area for all observers, and (ii) IDs in the discrimination data were described by IDs in the relation between suppression and area. This means that empirical summation in the contrast discrimination task can be attributed to growth in suppression with stimulus size that does not keep pace with the growth in excitation. © 2005 ARVO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gestalt grouping rules imply a process or mechanism for grouping together local features of an object into a perceptual whole. Several psychophysical experiments have been interpreted as evidence for constrained interactions between nearby spatial filter elements and this has led to the hypothesis that element linking might be mediated by these interactions. A common tacit assumption is that these interactions result in response modulation which disturbs a local contrast code. We addressed this possibility by performing contrast discrimination experiments using two-dimensional arrays of multiple Gabor patches arranged either (i) vertically, (ii) in circles (coherent conditions), or (iii) randomly (incoherent condition), as well as for a single Gabor patch. In each condition, contrast increments were applied to either the entire test stimulus (experiment 1) or a single patch whose position was cued (experiment 2). In experiment 3, the texture stimuli were reduced to a single contour by displaying only the central vertical strip. Performance was better for the multiple-patch conditions than for the single-patch condition, but whether the multiple-patch stimulus was coherent or not had no systematic effect on the results in any of the experiments. We conclude that constrained local interactions do not interfere with a local contrast code for our suprathreshold stimuli, suggesting that, in general, this is not the way in which element linking is achieved. The possibility that interactions are involved in enhancing the detectability of contour elements at threshold remains unchallenged by our experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sensory cells usually transmit information to afferent neurons via chemical synapses, in which the level of noise is dependent on an applied stimulus. Taking into account such dependence, we model a sensory system as an array of LIF neurons with a common signal. We show that information transmission is enhanced by a nonzero level of noise. Moreover, we demonstrate a phenomenon similar to suprathreshold stochastic resonance with additive noise. We remark that many properties of information transmission found for the LIF neurons was predicted by us before with simple binary units [Phys. Rev. E 75, 021121 (2007)]. This confirmation of our predictions allows us to point out identical roots of the phenomena found in the simple threshold systems and more complex LIF neurons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was to investigate human contrast perception at various contrast levels ranging from detection threshold to suprathreshold levels by using psychophysical techniques. The work consists of two major parts. The first part deals with contrast matching, and the second part deals with contrast discrimination. Contrast matching technique was used to determine when the perceived contrasts of different stimuli were equal. The effects of spatial frequency, stimulus area, image complexity and chromatic contrast on contrast detection thresholds and matches were studied. These factors influenced detection thresholds and perceived contrast at low contrast levels. However, at suprathreshold contrast levels perceived contrast became directly proportional to the physical contrast of the stimulus and almost independent of factors affecting detection thresholds. Contrast discrimination was studied by measuring contrast increment thresholds which indicate the smallest detectable contrast difference. The effects of stimulus area, external spatial image noise and retinal illuminance were studied. The above factors affected contrast detection thresholds and increment thresholds measured at low contrast levels. At high contrast levels, contrast increment thresholds became very similar so that the effect of these factors decreased. Human contrast perception was modelled by regarding the visual system as a simple image processing system. A visual signal is first low-pass filtered by the ocular optics. This is followed by spatial high-pass filtering by the neural visual pathways, and addition of internal neural noise. Detection is mediated by a local matched filter which is a weighted replica of the stimulus whose sampling efficiency decreases with increasing stimulus area and complexity. According to the model, the signals to be compared in a contrast matching task are first transferred through the early image processing stages mentioned above. Then they are filtered by a restoring transfer function which compensates for the low-level filtering and limited spatial integration at high contrast levels. Perceived contrasts of the stimuli are equal when the restored responses to the stimuli are equal. According to the model, the signals to be discriminated in a contrast discrimination task first go through the early image processing stages, after which signal dependent noise is added to the matched filter responses. The decision made by the human brain is based on the comparison between the responses of the matched filters to the stimuli, and the accuracy of the decision is limited by pre- and post-filter noises. The model for human contrast perception could accurately describe the results of contrast matching and discrimination in various conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cochlear implants are prosthetic devices used to provide hearing to people who would otherwise be profoundly deaf. The deliberate addition of noise to the electrode signals could increase the amount of information transmitted, but standard cochlear implants do not replicate the noise characteristic of normal hearing because if noise is added in an uncontrolled manner with a limited number of electrodes then it will almost certainly lead to worse performance. Only if partially independent stochastic activity can be achieved in each nerve fibre can mechanisms like suprathreshold stochastic resonance be effective. We are investigating the use of stochastic beamforming to achieve greater independence. The strategy involves presenting each electrode with a linear combination of independent Gaussian noise sources. Because the cochlea is filled with conductive salt solutions, the noise currents from the electrodes interact and the effective stimulus for each nerve fibre will therefore be a different weighted sum of the noise sources. To some extent therefore, the effective stimulus for a nerve fibre will be independent of the effective stimulus of neighbouring fibres. For a particular patient, the electrode position and the amount of current spread are fixed. The objective is therefore to find the linear combination of noise sources that leads to the greatest independence between nerve discharges. In this theoretical study we show that it is possible to get one independent point of excitation (one null) for each electrode and that stochastic beamforming can greatly decrease the correlation between the noise exciting different regions of the cochlea. © 2007 Copyright SPIE - The International Society for Optical Engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated information transmission in an array of threshold units that have signal-dependent noise and a common input signal. We demonstrate a phenomenon similar to stochastic resonance and suprathreshold stochastic resonance with additive noise and show that information transmission can be enhanced by a nonzero level of noise. By comparing system performance to one with additive noise we also demonstrate that the information transmission of weak signals is significantly better with signal-dependent noise. Indeed, information rates are not compromised even for arbitrary small input signals. Furthermore, by an appropriate selection of parameters, we observe that the information can be made to be (almost) independent of the level of the noise, thus providing a robust method of transmitting information in the presence of noise. These result could imply that the ability of hair cells to code and transmit sensory information in biological sensory systems is not limited by the level of signal-dependent noise. © 2007 The American Physical Society.