10 resultados para Supervised classification
em Aston University Research Archive
Resumo:
Tonal, textural and contextual properties are used in manual photointerpretation of remotely sensed data. This study has used these three attributes to produce a lithological map of semi arid northwest Argentina by semi automatic computer classification procedures of remotely sensed data. Three different types of satellite data were investigated, these were LANDSAT MSS, TM and SIR-A imagery. Supervised classification procedures using tonal features only produced poor classification results. LANDSAT MSS produced classification accuracies in the range of 40 to 60%, while accuracies of 50 to 70% were achieved using LANDSAT TM data. The addition of SIR-A data produced increases in the classification accuracy. The increased classification accuracy of TM over the MSS is because of the better discrimination of geological materials afforded by the middle infra red bands of the TM sensor. The maximum likelihood classifier consistently produced classification accuracies 10 to 15% higher than either the minimum distance to means or decision tree classifier, this improved accuracy was obtained at the cost of greatly increased processing time. A new type of classifier the spectral shape classifier, which is computationally as fast as a minimum distance to means classifier is described. However, the results for this classifier were disappointing, being lower in most cases than the minimum distance or decision tree procedures. The classification results using only tonal features were felt to be unacceptably poor, therefore textural attributes were investigated. Texture is an important attribute used by photogeologists to discriminate lithology. In the case of TM data, texture measures were found to increase the classification accuracy by up to 15%. However, in the case of the LANDSAT MSS data the use of texture measures did not provide any significant increase in the accuracy of classification. For TM data, it was found that second order texture, especially the SGLDM based measures, produced highest classification accuracy. Contextual post processing was found to increase classification accuracy and improve the visual appearance of classified output by removing isolated misclassified pixels which tend to clutter classified images. Simple contextual features, such as mode filters were found to out perform more complex features such as gravitational filter or minimal area replacement methods. Generally the larger the size of the filter, the greater the increase in the accuracy. Production rules were used to build a knowledge based system which used tonal and textural features to identify sedimentary lithologies in each of the two test sites. The knowledge based system was able to identify six out of ten lithologies correctly.
Resumo:
Social media has become an effective channel for communicating both trends and public opinion on current events. However the automatic topic classification of social media content pose various challenges. Topic classification is a common technique used for automatically capturing themes that emerge from social media streams. However, such techniques are sensitive to the evolution of topics when new event-dependent vocabularies start to emerge (e.g., Crimea becoming relevant to War Conflict during the Ukraine crisis in 2014). Therefore, traditional supervised classification methods which rely on labelled data could rapidly become outdated. In this paper we propose a novel transfer learning approach to address the classification task of new data when the only available labelled data belong to a previous epoch. This approach relies on the incorporation of knowledge from DBpedia graphs. Our findings show promising results in understanding how features age, and how semantic features can support the evolution of topic classifiers.
Resumo:
Urban regions present some of the most challenging areas for the remote sensing community. Many different types of land cover have similar spectral responses, making them difficult to distinguish from one another. Traditional per-pixel classification techniques suffer particularly badly because they only use these spectral properties to determine a class, and no other properties of the image, such as context. This project presents the results of the classification of a deeply urban area of Dudley, West Midlands, using 4 methods: Supervised Maximum Likelihood, SMAP, ECHO and Unsupervised Maximum Likelihood. An accuracy assessment method is then developed to allow a fair representation of each procedure and a direct comparison between them. Subsequently, a classification procedure is developed that makes use of the context in the image, though a per-polygon classification. The imagery is broken up into a series of polygons extracted from the Marr-Hildreth zero-crossing edge detector. These polygons are then refined using a region-growing algorithm, and then classified according to the mean class of the fine polygons. The imagery produced by this technique is shown to be of better quality and of a higher accuracy than that of other conventional methods. Further refinements are suggested and examined to improve the aesthetic appearance of the imagery. Finally a comparison with the results produced from a previous study of the James Bridge catchment, in Darleston, West Midlands, is made, showing that the Polygon classified ATM imagery performs significantly better than the Maximum Likelihood classified videography used in the initial study, despite the presence of geometric correction errors.
Resumo:
Sentiment analysis or opinion mining aims to use automated tools to detect subjective information such as opinions, attitudes, and feelings expressed in text. This paper proposes a novel probabilistic modeling framework called joint sentiment-topic (JST) model based on latent Dirichlet allocation (LDA), which detects sentiment and topic simultaneously from text. A reparameterized version of the JST model called Reverse-JST, obtained by reversing the sequence of sentiment and topic generation in the modeling process, is also studied. Although JST is equivalent to Reverse-JST without a hierarchical prior, extensive experiments show that when sentiment priors are added, JST performs consistently better than Reverse-JST. Besides, unlike supervised approaches to sentiment classification which often fail to produce satisfactory performance when shifting to other domains, the weakly supervised nature of JST makes it highly portable to other domains. This is verified by the experimental results on data sets from five different domains where the JST model even outperforms existing semi-supervised approaches in some of the data sets despite using no labeled documents. Moreover, the topics and topic sentiment detected by JST are indeed coherent and informative. We hypothesize that the JST model can readily meet the demand of large-scale sentiment analysis from the web in an open-ended fashion.
Resumo:
This article presents two novel approaches for incorporating sentiment prior knowledge into the topic model for weakly supervised sentiment analysis where sentiment labels are considered as topics. One is by modifying the Dirichlet prior for topic-word distribution (LDA-DP), the other is by augmenting the model objective function through adding terms that express preferences on expectations of sentiment labels of the lexicon words using generalized expectation criteria (LDA-GE). We conducted extensive experiments on English movie review data and multi-domain sentiment dataset as well as Chinese product reviews about mobile phones, digital cameras, MP3 players, and monitors. The results show that while both LDA-DP and LDAGE perform comparably to existing weakly supervised sentiment classification algorithms, they are much simpler and computationally efficient, rendering themmore suitable for online and real-time sentiment classification on the Web. We observed that LDA-GE is more effective than LDA-DP, suggesting that it should be preferred when considering employing the topic model for sentiment analysis. Moreover, both models are able to extract highly domain-salient polarity words from text.
Resumo:
Text classification is essential for narrowing down the number of documents relevant to a particular topic for further pursual, especially when searching through large biomedical databases. Protein-protein interactions are an example of such a topic with databases being devoted specifically to them. This paper proposed a semi-supervised learning algorithm via local learning with class priors (LL-CP) for biomedical text classification where unlabeled data points are classified in a vector space based on their proximity to labeled nodes. The algorithm has been evaluated on a corpus of biomedical documents to identify abstracts containing information about protein-protein interactions with promising results. Experimental results show that LL-CP outperforms the traditional semisupervised learning algorithms such as SVMand it also performs better than local learning without incorporating class priors.
Resumo:
We propose a novel framework where an initial classifier is learned by incorporating prior information extracted from an existing sentiment lexicon. Preferences on expectations of sentiment labels of those lexicon words are expressed using generalized expectation criteria. Documents classified with high confidence are then used as pseudo-labeled examples for automatical domain-specific feature acquisition. The word-class distributions of such self-learned features are estimated from the pseudo-labeled examples and are used to train another classifier by constraining the model's predictions on unlabeled instances. Experiments on both the movie review data and the multi-domain sentiment dataset show that our approach attains comparable or better performance than exiting weakly-supervised sentiment classification methods despite using no labeled documents.
Resumo:
Joint sentiment-topic (JST) model was previously proposed to detect sentiment and topic simultaneously from text. The only supervision required by JST model learning is domain-independent polarity word priors. In this paper, we modify the JST model by incorporating word polarity priors through modifying the topic-word Dirichlet priors. We study the polarity-bearing topics extracted by JST and show that by augmenting the original feature space with polarity-bearing topics, the in-domain supervised classifiers learned from augmented feature representation achieve the state-of-the-art performance of 95% on the movie review data and an average of 90% on the multi-domain sentiment dataset. Furthermore, using feature augmentation and selection according to the information gain criteria for cross-domain sentiment classification, our proposed approach performs either better or comparably compared to previous approaches. Nevertheless, our approach is much simpler and does not require difficult parameter tuning.
Resumo:
Web APIs have gained increasing popularity in recent Web service technology development owing to its simplicity of technology stack and the proliferation of mashups. However, efficiently discovering Web APIs and the relevant documentations on the Web is still a challenging task even with the best resources available on the Web. In this paper we cast the problem of detecting the Web API documentations as a text classification problem of classifying a given Web page as Web API associated or not. We propose a supervised generative topic model called feature latent Dirichlet allocation (feaLDA) which offers a generic probabilistic framework for automatic detection of Web APIs. feaLDA not only captures the correspondence between data and the associated class labels, but also provides a mechanism for incorporating side information such as labelled features automatically learned from data that can effectively help improving classification performance. Extensive experiments on our Web APIs documentation dataset shows that the feaLDA model outperforms three strong supervised baselines including naive Bayes, support vector machines, and the maximum entropy model, by over 3% in classification accuracy. In addition, feaLDA also gives superior performance when compared against other existing supervised topic models.
Resumo:
The accuracy of a map is dependent on the reference dataset used in its construction. Classification analyses used in thematic mapping can, for example, be sensitive to a range of sampling and data quality concerns. With particular focus on the latter, the effects of reference data quality on land cover classifications from airborne thematic mapper data are explored. Variations in sampling intensity and effort are highlighted in a dataset that is widely used in mapping and modelling studies; these may need accounting for in analyses. The quality of the labelling in the reference dataset was also a key variable influencing mapping accuracy. Accuracy varied with the amount and nature of mislabelled training cases with the nature of the effects varying between classifiers. The largest impacts on accuracy occurred when mislabelling involved confusion between similar classes. Accuracy was also typically negatively related to the magnitude of mislabelled cases and the support vector machine (SVM), which has been claimed to be relatively insensitive to training data error, was the most sensitive of the set of classifiers investigated, with overall classification accuracy declining by 8% (significant at 95% level of confidence) with the use of a training set containing 20% mislabelled cases.