5 resultados para Sulfuric-acid-solutions

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Magnesian limestone is a key construction component of many historic buildings that is under constant attack from environmental pollutants notably by oxides of sulfur via acid rain, particulate matter sulfate and gaseous SO 2 emissions. Hydrophobic surface coatings offer a potential route to protect existing stonework in cultural heritage sites, however, many available coatings act by blocking the stone microstructure, preventing it from 'breathing' and promoting mould growth and salt efflorescence. Here we report on a conformal surface modification method using self-assembled monolayers of naturally sourced free fatty acids combined with sub-monolayer fluorinated alkyl silanes to generate hydrophobic (HP) and super hydrophobic (SHP) coatings on calcite. We demonstrate the efficacy of these HP and SHP surface coatings for increasing limestone resistance to sulfation, and thus retarding gypsum formation under SO/H O and model acid rain environments. SHP treatment of 19th century stone from York Minster suppresses sulfuric acid permeation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose. We investigated structural differences in the fatty acid profiles of lipids extracted from ex vivo contact lenses by using gas chromatography mass spectrometry (GCMS). Two lens materials (balafilcon A or lotrafilcon A) were worn on a daily or continuous wear schedule for 30 and 7 days. Methods. Lipids from subject-worn lenses were extracted using 1:1 chloroform: methanol and transmethylated using 5% sulfuric acid in methanol. Fatty acid methyl esters (FAMEs) were collected using hexane and water, and analyzed by GCMS (Varian 3800 GC, Saturn 2000 MS). Results. The gas chromatograms of lens extracts that were worn on a continuous wear schedule showed two predominant peaks, C16:0 and C18:0, both of which are saturated fatty acids. This was the case for balafilcon A and lotrafilcon A lenses. However, the gas chromatograms of lens extracts that were worn on a daily wear schedule showed saturated (C16:0, C18:0) and unsaturated (C16:1 and C18:1) fatty acids. Conclusions. Unsaturated fatty acids are degraded during sleep in contact lenses. Degradation occurred independently of lens material or subject-to-subject variability in lipid deposition. The consequences of lipid degradation are the production of oxidative products, which may be linked to contact lens discomfort. © 2014 The Association for Research in Vision and Ophthalmology, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biodiesel is a renewable substitute fuel for petroleum diesel fuel which is made from nontoxic, biodegradable, renewable sources such as refined and used vegetable oils and animal fats. Biodiesel is produced by transesterification in which oil or fat is reacted with a monohydric alcohol in the presence of a catalyst. The process of transesterification is affected by the mode of reaction, molar ratio of alcohol to oil, type of alcohol, nature and amount of catalysts, reaction time, and temperature. Various studies have been carried out using different oils as the raw material and different alcohols (methanol, ethanol, butanol), as well as different catalysts, notably homogeneous ones such as sodium hydroxide, potassium hydroxide, sulfuric acid, and supercritical fluids or enzymes such as lipases. Recent research has focused on the application of heterogeneous catalysts to produce biodiesel, because of their environmental and economic advantages. This paper reviews the literature regarding both catalytic and noncatalytic production of biodiesel. Advantages and disadvantages of different methods and catalysts used are discussed. We also discuss the importance of developing a single catalyst for both esterification and transesterification reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Fmoc synthetic strategy was employed to synthesise two identical combinatorial peptide libraries on a hydrophilic PEG-PS resin. One library was appended with boronic acid moieties at two positionally-fixed locations. Successful inclusion of the boronic acid units was confirmed using a novel UV fluorescent colorimetric assay employing carminic acid as the dye compound. A study of the effect had by the resin-bound peptides bearing boronic acid groups on the binding characteristics of vancomycin, a medically relevant antibiotic glycoprotein, was conducted. In all, 132 library compounds were tested for their binding affinity with vancomycin, via immobilisation of the glycopeptide onto the solid support through hydrogen bonding or complexation with the boronic acid moieties. Subsequent cleavage via acidolysis afforded vancomycin containing solutions which were quantified by growth inhibition of methicillin susceptible Staphylococcus aureus. Comparison of the diameters of the resultant zones of inhibition and those produced by vancomycin of known concentrations afforded a means of calculating the vancomycin concentration of the cleavage solutions, and thereby determining the binding affinity of vancomycin to each peptide sequence. Five peptide sequences and twenty one of the peptidyl-boronic acid sequences showed zones of inhibition, demonstrating their reversible affinity for vancomycin. Three peptide sequences showed zones of inhibition in both libraries. The presence of boronic acid was therefore shown to impart, enhance, detract and remove the affinity of vancomycin to a range of resin-bound peptide sequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subunit vaccine discovery is an accepted clinical priority. The empirical approach is time- and labor-consuming and can often end in failure. Rational information-driven approaches can overcome these limitations in a fast and efficient manner. However, informatics solutions require reliable algorithms for antigen identification. All known algorithms use sequence similarity to identify antigens. However, antigenicity may be encoded subtly in a sequence and may not be directly identifiable by sequence alignment. We propose a new alignment-independent method for antigen recognition based on the principal chemical properties of protein amino acid sequences. The method is tested by cross-validation on a training set of bacterial antigens and external validation on a test set of known antigens. The prediction accuracy is 83% for the cross-validation and 80% for the external test set. Our approach is accurate and robust, and provides a potent tool for the in silico discovery of medically relevant subunit vaccines.