3 resultados para Suites (Orchestra)

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Case law report - online

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A group of lithologically varied UK aggregates have been incorporated into concrete prisms of variable alkali content to ascertain the alkali levels at which significant ASR first occurs at 38oC and 100% RH. Petrographical analysis was used to establish the source of reactivity. The results of these expansion tests showed that significant ASR can develop with certain aggregates at initial alkali levels as low as 3.5 kg/m3 Na2Oe. Similar prisms were made at initial alkali levels, well above, on and just below the alkali thresholds for each aggregate. These prisms were placed in salt solution to establish the effects of ASR. The results showed that an external source of NaCl does accentuate ASR in high alkali mixes. However, in low alkali mixes the ASR initiated was even greater than that developed by the high alkali mixes. It was proposed that an `initial alkali pessimum' existed for each aggregate type for specimens placed in salt solution. Electron microprobe analysis of the ASR gels from concretes immersed in salt solution, showed that two compositionally varied gel suites develop. The first suite was derived from ASR caused by the initial alkalis in a concrete mix and was identical to ASR gels derived from the various concretes when immersed in distilled water. The second suite was developed by alkalis derived from a reaction between NaCl and the C3A component of the cement paste. It was demonstrated that the `initial alkali pessimum' was probably due to a combination of these two ASR types at the alkali threshold point where both suites of ASR gel can develop. Equivalent mixes were made with a 25% replacement of the cement by pulverised fuel ash (pfa) to establish whether alkalis released from the pfa could initiate ASR in otherwise non-reactive low alkali mixes. The addition of air entrainment to reactive concrete mixes was also examined as a method of suppressing ASR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Priestlaw and Cockburn Law intrusions are zoned granitoid plutons intruded into Lower Palaeozoic sediments at the margin of, and prior to closure of, the Iapetus Ocean. They vary from marginal basic rocks to more acid rocks towards their centres. The parental magmas to the plutons were derived from an isotopically depleted mantle modified by melts/fluids during subduction. Zonation in the plutons was caused by combined assimilation and fractional crystallisation (AFC), and rates of assimilation were low relative to rates of fractionation. A series of pyroxene-mica diorites in Priestlaw are however hybrids formed by simple mixing. Porphyrite-acid porphyrite dykes, associated with the plutons, represent chilled portions of the pluton magmas; more evolved quartz porphyry dykes represent crustal melts. Lamprophyre dykes have high LILE and LREE abundances and relative depletions of HFS elements, typical of subduction related ultra-potassic magmas. High Mg numbers, Ni and Cr contents and experimental constraints, imply near primary status for the least evolved lamprophyres. Their enrichments in incompatible elements, high La/Nb, La/Yb, Sr and low Nd indicate derivation from a previously metasomatised mantle source. Granitoid plutons and lavas in the northern Southern Uplands have high Nd and low Sr, whereas the younger plutons of the southern Southern Uplands have higher Sr, La/Yb and lower Nd, consistent with derivation from a more enriched source. No plutons however have remained as closed systems. Three magmatic suites are present in southern Scotland: (1) Midland Valley Suite (2) Northern Southern Uplands Suite and (3) Southern Southern Uplands Suite, consistent with previous models indicating northward underthrusting of English lithosphere below the southern Southern Uplands. Further underthrusting of decoupled lithospheric mantle is indicated by the presence of lamorophyres in the eastern Southern Uplands, and took place between 410 Ma and 400 Ma.