38 resultados para Successive linear programming (SLP)
em Aston University Research Archive
Resumo:
For a submitted query to multiple search engines finding relevant results is an important task. This paper formulates the problem of aggregation and ranking of multiple search engines results in the form of a minimax linear programming model. Besides the novel application, this study detects the most relevant information among a return set of ranked lists of documents retrieved by distinct search engines. Furthermore, two numerical examples aree used to illustrate the usefulness of the proposed approach.
Resumo:
The measurement of different aspects of information society has been problematic over along time, and the International Telecommunication Union (ITU) is spearheading in developing a single ICT index. In Geneva during the first World Summit on Information Society (WSIS) in December 2003, the heads of states declared their commitment to the importance of benchmarking and measuring progress toward the information society. Consequently, they re-affirmed their Geneva commitments in their second summit held in Tunis in 2005. In this paper, we propose a multiplicative linear programming model to measure Opportunity Index. We also compared our results with the common measure of ICT opportunity index and we found that the two indices are consistent in their measurement of digital opportunity though differences still exist among regions.
Resumo:
Linear programming (LP) is the most widely used optimization technique for solving real-life problems because of its simplicity and efficiency. Although conventional LP models require precise data, managers and decision makers dealing with real-world optimization problems often do not have access to exact values. Fuzzy sets have been used in the fuzzy LP (FLP) problems to deal with the imprecise data in the decision variables, objective function and/or the constraints. The imprecisions in the FLP problems could be related to (1) the decision variables; (2) the coefficients of the decision variables in the objective function; (3) the coefficients of the decision variables in the constraints; (4) the right-hand-side of the constraints; or (5) all of these parameters. In this paper, we develop a new stepwise FLP model where fuzzy numbers are considered for the coefficients of the decision variables in the objective function, the coefficients of the decision variables in the constraints and the right-hand-side of the constraints. In the first step, we use the possibility and necessity relations for fuzzy constraints without considering the fuzzy objective function. In the subsequent step, we extend our method to the fuzzy objective function. We use two numerical examples from the FLP literature for comparison purposes and to demonstrate the applicability of the proposed method and the computational efficiency of the procedures and algorithms. © 2013-IOS Press and the authors. All rights reserved.
Resumo:
When a query is passed to multiple search engines, each search engine returns a ranked list of documents. Researchers have demonstrated that combining results, in the form of a "metasearch engine", produces a significant improvement in coverage and search effectiveness. This paper proposes a linear programming mathematical model for optimizing the ranked list result of a given group of Web search engines for an issued query. An application with a numerical illustration shows the advantages of the proposed method. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Purpose – The purpose of this research is to develop a holistic approach to maximize the customer service level while minimizing the logistics cost by using an integrated multiple criteria decision making (MCDM) method for the contemporary transshipment problem. Unlike the prevalent optimization techniques, this paper proposes an integrated approach which considers both quantitative and qualitative factors in order to maximize the benefits of service deliverers and customers under uncertain environments. Design/methodology/approach – This paper proposes a fuzzy-based integer linear programming model, based on the existing literature and validated with an example case. The model integrates the developed fuzzy modification of the analytic hierarchy process (FAHP), and solves the multi-criteria transshipment problem. Findings – This paper provides several novel insights about how to transform a company from a cost-based model to a service-dominated model by using an integrated MCDM method. It suggests that the contemporary customer-driven supply chain remains and increases its competitiveness from two aspects: optimizing the cost and providing the best service simultaneously. Research limitations/implications – This research used one illustrative industry case to exemplify the developed method. Considering the generalization of the research findings and the complexity of the transshipment service network, more cases across multiple industries are necessary to further enhance the validity of the research output. Practical implications – The paper includes implications for the evaluation and selection of transshipment service suppliers, the construction of optimal transshipment network as well as managing the network. Originality/value – The major advantages of this generic approach are that both quantitative and qualitative factors under fuzzy environment are considered simultaneously and also the viewpoints of service deliverers and customers are focused. Therefore, it is believed that it is useful and applicable for the transshipment service network design.
Resumo:
This paper explores the use of the optimisation procedures in SAS/OR software with application to the measurement of efficiency and productivity of decision-making units (DMUs) using data envelopment analysis (DEA) techniques. DEA was originally introduced by Charnes et al. [J. Oper. Res. 2 (1978) 429] is a linear programming method for assessing the efficiency and productivity of DMUs. Over the last two decades, DEA has gained considerable attention as a managerial tool for measuring performance of organisations and it has widely been used for assessing the efficiency of public and private sectors such as banks, airlines, hospitals, universities and manufactures. As a result, new applications with more variables and more complicated models are being introduced. Further to successive development of DEA a non-parametric productivity measure, Malmquist index, has been introduced by Fare et al. [J. Prod. Anal. 3 (1992) 85]. Employing Malmquist index, productivity growth can be decomposed into technical change and efficiency change. On the other hand, the SAS is a powerful software and it is capable of running various optimisation problems such as linear programming with all types of constraints. To facilitate the use of DEA and Malmquist index by SAS users, a SAS/MALM code was implemented in the SAS programming language. The SAS macro developed in this paper selects the chosen variables from a SAS data file and constructs sets of linear-programming models based on the selected DEA. An example is given to illustrate how one could use the code to measure the efficiency and productivity of organisations.
Resumo:
A method has been constructed for the solution of a wide range of chemical plant simulation models including differential equations and optimization. Double orthogonal collocation on finite elements is applied to convert the model into an NLP problem that is solved either by the VF 13AD package based on successive quadratic programming, or by the GRG2 package, based on the generalized reduced gradient method. This approach is termed simultaneous optimization and solution strategy. The objective functional can contain integral terms. The state and control variables can have time delays. Equalities and inequalities containing state and control variables can be included into the model as well as algebraic equations and inequalities. The maximum number of independent variables is 2. Problems containing 3 independent variables can be transformed into problems having 2 independent variables using finite differencing. The maximum number of NLP variables and constraints is 1500. The method is also suitable for solving ordinary and partial differential equations. The state functions are approximated by a linear combination of Lagrange interpolation polynomials. The control function can either be approximated by a linear combination of Lagrange interpolation polynomials or by a piecewise constant function over finite elements. The number of internal collocation points can vary by finite elements. The residual error is evaluated at arbitrarily chosen equidistant grid-points, thus enabling the user to check the accuracy of the solution between collocation points, where the solution is exact. The solution functions can be tabulated. There is an option to use control vector parameterization to solve optimization problems containing initial value ordinary differential equations. When there are many differential equations or the upper integration limit should be selected optimally then this approach should be used. The portability of the package has been addressed converting the package from V AX FORTRAN 77 into IBM PC FORTRAN 77 and into SUN SPARC 2000 FORTRAN 77. Computer runs have shown that the method can reproduce optimization problems published in the literature. The GRG2 and the VF I 3AD packages, integrated into the optimization package, proved to be robust and reliable. The package contains an executive module, a module performing control vector parameterization and 2 nonlinear problem solver modules, GRG2 and VF I 3AD. There is a stand-alone module that converts the differential-algebraic optimization problem into a nonlinear programming problem.
Using interior point algorithms for the solution of linear programs with special structural features
Resumo:
Linear Programming (LP) is a powerful decision making tool extensively used in various economic and engineering activities. In the early stages the success of LP was mainly due to the efficiency of the simplex method. After the appearance of Karmarkar's paper, the focus of most research was shifted to the field of interior point methods. The present work is concerned with investigating and efficiently implementing the latest techniques in this field taking sparsity into account. The performance of these implementations on different classes of LP problems is reported here. The preconditional conjugate gradient method is one of the most powerful tools for the solution of the least square problem, present in every iteration of all interior point methods. The effect of using different preconditioners on a range of problems with various condition numbers is presented. Decomposition algorithms has been one of the main fields of research in linear programming over the last few years. After reviewing the latest decomposition techniques, three promising methods were chosen the implemented. Sparsity is again a consideration and suggestions have been included to allow improvements when solving problems with these methods. Finally, experimental results on randomly generated data are reported and compared with an interior point method. The efficient implementation of the decomposition methods considered in this study requires the solution of quadratic subproblems. A review of recent work on algorithms for convex quadratic was performed. The most promising algorithms are discussed and implemented taking sparsity into account. The related performance of these algorithms on randomly generated separable and non-separable problems is also reported.
Resumo:
The non-linear programming algorithms for the minimum weight design of structural frames are presented in this thesis. The first, which is applied to rigidly jointed and pin jointed plane frames subject to deflexion constraints, consists of a search in a feasible design space. Successive trial designs are developed so that the feasibility and the optimality of the designs are improved simultaneously. It is found that this method is restricted lo the design of structures with few unknown variables. The second non-linear programming algorithm is presented .in a general form. This consists of two types of search, one improving feasibility and the other optimality. The method speeds up the 'feasible direction' approach by obtaining a constant weight direction vector that is influenced by dominating constraints. For pin jointed plane and space frames this method is used to obtain a 'minimum weight' design which satisfies restrictions on stresses and deflexions. The matrix force method enables the design requirements to be expressed in a general form and the design problem is automatically formulated within the computer. Examples are given to explain the method and the design criteria are extended to include member buckling. Fundamental theorems are proposed and proved to confirm that structures are inter-related. These theorems are applicable to linear elastic structures and facilitate the prediction of the behaviour of one structure from the results of analysing another, more general, or related structure. It becomes possible to evaluate the significance of each member in the behaviour of a structure and the problem of minimum weight design is extended to include shape. A method is proposed to design structures of optimum shape with stress and deflexion limitations. Finally a detailed investigation is carried out into the design of structures to study the factors that influence their shape.
Resumo:
Iterative multiuser joint decoding based on exact Belief Propagation (BP) is analyzed in the large system limit by means of the replica method. It is shown that performance can be improved by appropriate power assignment to the users. The optimum power assignment can be found by linear programming in most technically relevant cases. The performance of BP iterative multiuser joint decoding is compared to suboptimum approximations based on Interference Cancellation (IC). While IC receivers show a significant loss for equal-power users, they yield performance close to BP under optimum power assignment.
Resumo:
Physical distribution plays an imporant role in contemporary logistics management. Both satisfaction level of of customer and competitiveness of company can be enhanced if the distribution problem is solved optimally. The multi-depot vehicle routing problem (MDVRP) belongs to a practical logistics distribution problem, which consists of three critical issues: customer assignment, customer routing, and vehicle sequencing. According to the literatures, the solution approaches for the MDVRP are not satisfactory because some unrealistic assumptions were made on the first sub-problem of the MDVRP, ot the customer assignment problem. To refine the approaches, the focus of this paper is confined to this problem only. This paper formulates the customer assignment problem as a minimax-type integer linear programming model with the objective of minimizing the cycle time of the depots where setup times are explicitly considered. Since the model is proven to be MP-complete, a genetic algorithm is developed for solving the problem. The efficiency and effectiveness of the genetic algorithm are illustrated by a numerical example.
Resumo:
Group decision making is the study of identifying and selecting alternatives based on the values and preferences of the decision maker. Making a decision implies that there are several alternative choices to be considered. This paper uses the concept of Data Envelopment Analysis to introduce a new mathematical method for selecting the best alternative in a group decision making environment. The introduced model is a multi-objective function which is converted into a multi-objective linear programming model from which the optimal solution is obtained. A numerical example shows how the new model can be applied to rank the alternatives or to choose a subset of the most promising alternatives.
Resumo:
Over 60% of the recurrent budget of the Ministry of Health (MoH) in Angola is spent on the operations of the fixed health care facilities (health centres plus hospitals). However, to date, no study has been attempted to investigate how efficiently those resources are used to produce health services. Therefore the objectives of this study were to assess the technical efficiency of public municipal hospitals in Angola; assess changes in productivity over time with a view to analyzing changes in efficiency and technology; and demonstrate how the results can be used in the pursuit of the public health objective of promoting efficiency in the use of health resources. The analysis was based on a 3-year panel data from all the 28 public municipal hospitals in Angola. Data Envelopment Analysis (DEA), a non-parametric linear programming approach, was employed to assess the technical and scale efficiency and productivity change over time using Malmquist index.The results show that on average, productivity of municipal hospitals in Angola increased by 4.5% over the period 2000-2002; that growth was due to improvements in efficiency rather than innovation. © 2008 Springer Science+Business Media, LLC.
Resumo:
This paper contributes to extend the minimax disparity to determine the ordered weighted averaging (OWA) model based on linear programming. It introduces the minimax disparity approach between any distinct pairs of the weights and uses the duality of linear programming to prove the feasibility of the extended OWA operator weights model. The paper finishes with an open problem. © 2006 Elsevier Ltd. All rights reserved.