13 resultados para Subnormal agglomerate

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental and theoretical study of the transport of mineral wool fibre agglomerates in nuclear power plant containment sumps is being performed. A racetrack channel was devised to provide data for the validation of numerical models, which are intended to model the transport of fibre agglomerates. The racetrack channel provides near uniform and steady conditions that lead to either the sedimentation or suspension of the agglomerates. Various experimental techniques were used to determine the velocity conditions and the distribution of the fibre agglomerates in the channel. The fibre agglomerates are modelled as fluid particles in the Eulerian reference frame. Simulations of pure sedimentation of a known mass and volume of agglomerations show that the transport of the fibre agglomerates can be replicated. The suspension of the fibres is also replicated in the simulations; however, the definition of the fibre agglomerate phase is strongly dependent on the selected density and diameter. Detailed information on the morphology of the fibre agglomerates is lacking for the suspension conditions, as the fibre agglomerates may undergo breakage and erosion. Therefore, ongoing work, which is described here, is being pursued to improve the experimental characterisation of the suspended transport of the fibre agglomerates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mineral wool insulation material applied to the primary cooling circuit of a nuclear reactor maybe damaged in the course of a loss of coolant accident (LOCA). The insulation material released by the leak may compromise the operation of the emergency core cooling system (ECCS), as it maybe transported together with the coolant in the form of mineral wool fiber agglomerates (MWFA) suspensions to the containment sump strainers, which are mounted at the inlet of the ECCS to keep any debris away from the emergency cooling pumps. In the further course of the LOCA, the MWFA may block or penetrate the strainers. In addition to the impact of MWFA on the pressure drop across the strainers, corrosion products formed over time may also accumulate in the fiber cakes on the strainers, which can lead to a significant increase in the strainer pressure drop and result in cavitation in the ECCS. Therefore, it is essential to understand the transport characteristics of the insulation materials in order to determine the long-term operability of nuclear reactors, which undergo LOCA. An experimental and theoretical study performed by the Helmholtz-Zentrum Dresden-Rossendorf and the Hochschule Zittau/Görlitz is investigating the phenomena that maybe observed in the containment vessel during a primary circuit coolant leak. The study entails the generation of fiber agglomerates, the determination of their transport properties in single and multi-effect experiments and the long-term effects that particles formed due to corrosion of metallic containment internals by the coolant medium have on the strainer pressure drop. The focus of this presentation is on the numerical models that are used to predict the transport of MWFA by CFD simulations. A number of pseudo-continuous dispersed phases of spherical wetted agglomerates can represent the MWFA. The size, density, the relative viscosity of the fluid-fiber agglomerate mixture and the turbulent dispersion all affect how the fiber agglomerates are transported. In the cases described here, the size is kept constant while the density is modified. This definition affects both the terminal velocity and volume fraction of the dispersed phases. Application of such a model to sedimentation in a quiescent column and a horizontal flow are examined. The scenario also presents the suspension and horizontal transport of a single fiber agglomerate phase in a racetrack type channel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis reports a detailed investigation of the micromechanics of agglomerate behaviour under free-fall impact, double (punch) impact and diametrical compression tests using the simulation software TRUBAL. The software is based on the discrete element method (DEM) which incorporates the Newtonian equations of motion and contact mechanics theory to model the interparticle interactions. Four agglomerates have been used: three dense (differing in interface energy and contact density) and one loose. Although the simulated agglomerates are relatively coarse-grained, the results obtained are in good agreement with laboratory test results reported in the literature. The computer simulation results show that, in all three types of test, the loose agglomerate cannot fracture as it is unable to store sufficient elastic energy. Instead, it becomes flattened for low loading-rates and shattered or crushed at higher loading-rates. In impact tests, the dense agglomerates experience only local damage at low impact velocities. Semi-brittle fracture and fragmentation are produced over a range of higher impact velocities and at very high impact velocities shattering occurs. The dense agglomerates fracture in two or three large fragments in the diametrical compression tests. Local damage at the agglomerate-platen interface always occurs prior to fracture and consists of local bond breakage (microcrack formation) and local dislocations (compaction). The fracture process is dynamic and much more complex than that suggested by continuum fracture mechanics theory. Cracks are always initiated from the contact zones and propagate towards the agglomerate centre. Fracture occurs a short time after the start of unloading when a fracture crack "selection" process takes place. The detailed investigation of the agglomerate damage processes includes an examination of the evolution of the fracture surface. Detailed comparisons of the behaviour of the same agglomerate in all three types of test are presented. The particle size distribution curves of the debris are also examined, for both free-fall and double impact tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the processing industries particulate materials are often in the form of powders which themselves are agglomerations of much smaller sized particles. During powder processing operations agglomerate degradation occurs primarily as a result of collisions between agglomerates and between agglomerates and the process equipment. Due to the small size of the agglomerates and the very short duration of the collisions it is currently not possible to obtain sufficiently detailed quantitative information from real experiments to provide a sound theoretically based strategy for designing particles to prevent or guarantee breakage. However, with the aid of computer simulated experiments, the micro-examination of these short duration dynamic events is made possible. This thesis presents the results of computer simulated experiments on a 2D monodisperse agglomerate in which the algorithms used to model the particle-particle interactions have been derived from contact mechanics theories and, necessarily, incorporate contact adhesion. A detailed description of the theoretical background is included in the thesis. The results of the agglomerate impact simulations show three types of behaviour depending on whether the initial impact velocity is high, moderate or low. It is demonstrated that high velocity impacts produce extensive plastic deformation which leads to subsequent shattering of the agglomerate. At moderate impact velocities semi-brittle fracture is observed and there is a threshold velocity below which the agglomerate bounces off the wall with little or no visible damage. The micromechanical processes controlling these different types of behaviour are discussed and illustrated by computer graphics. Further work is reported to demonstrate the effect of impact velocity and bond strength on the damage produced. Empirical relationships between impact velocity, bond strength and damage are presented and their relevance to attrition and comminution is discussed. The particle size distribution curves resulting from the agglomerate impacts are also provided. Computer simulated diametrical compression tests on the same agglomerate have also been carried out. Simulations were performed for different platen velocities and different bond strengths. The results show that high platen velocities produce extensive plastic deformation and crushing. Low platen velocities produce semi-brittle failure in which cracks propagate from the platens inwards towards the centre of the agglomerate. The results are compared with the results of the agglomerate impact tests in terms of work input, applied velocity and damage produced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis considers the computer simulation of moist agglomerate collisions using the discrete element method (DEM). The study is confined to pendular state moist agglomerates, at which liquid is presented as either absorbed immobile films or pendular liquid bridges and the interparticle force is modelled as the adhesive contact force and interstitial liquid bridge force. Algorithms used to model the contact force due to surface adhesion, tangential friction and particle deformation have been derived by other researchers and are briefly described in the thesis. A theoretical study of the pendular liquid bridge force between spherical particles has been made and the algorithms for the modelling of the pendular liquid bridge force between spherical particles have been developed and incorporated into the Aston version of the DEM program TRUBAL. It has been found that, for static liquid bridges, the more explicit criterion for specifying the stable solution and critical separation is provided by the total free energy. The critical separation is given by the cube root of liquid bridge volume to a good approximation and the 'gorge method' of evaluation based on the toroidal approximation leads to errors in the calculated force of less than 10%. Three dimensional computer simulations of an agglomerate impacting orthogonally with a wall are reported. The results demonstrate the effectiveness of adding viscous binder to prevent attrition, a common practice in process engineering. Results of simulated agglomerate-agglomerate collisions show that, for colinear agglomerate impacts, there is an optimum velocity which results in a near spherical shape of the coalesced agglomerate and, hence, minimises attrition due to subsequent collisions. The relationship between the optimum impact velocity and the liquid viscosity and surface tension is illustrated. The effect of varying the angle of impact on the coalescence/attrition behaviour is also reported. (DX 187, 340).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Presentation of the progress made in modelling fibre agglomerate transport in the racetrack channel. Fibre agglomerates can be generated through the disruption of insulation materials during LOCA in NPPs. The fibres can make their way to the containment sump strainers and lead to their blockage. This blockage can lead to an increase in the pressure drop acting across the strainers, which can lead to cavitation behind the strainer and in the recirculation pumps. This will lead to a loss of ECC water reaching the reactor. A small proportion of the fibres may also reach the reactor vessel. Therefore reliable numerical models of the three-dimensional flow behaviour of the fibres must be developed. The racetrack channel offers the chance to validate such models. The presentation describes the techniques involved and the results obtained from transient simulations of the whole channel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Samples of Various industrial or pilot plant spray-dried materials were obtained from manufacturers together with details of drying conditions and feed concentrations. The samples were subjected to qualitative and semi-quantitative examination to identify structural and morphological features. The results were related to measured bulk physical properties and to drying conditions. Single particles were produced in a convective drying process Analogous to spray drying, in which different solids or mixtures of solids were dried from solutions, slurries or pastes as single suspended droplets. The localized chemical and physical structures were analysed and in some cases the retention of volatiles monitored. The results were related to experimental conditions, viz.; air temperature, initial solids concentration and the degree of feed aeration. Three distinct categories of particle morphology were identified, i.e.; crystalline, skin-forming and agglomerate. Each category is evidence of a characteristic drying behaviour which is dependent on initial solids concentration. the degree of feed aeration, and drying temperature. Powder flow ability, particle and bulk density, particle-size, particle friability, and the retention of volatiles bear a direct relationship to morphological structure. Morphologies of multicomponent mixtures were complex, but the respective migration rates of the solutes were dependent on drying temperature. Gas-film heat and SDSS transfer coefficients of single pure liquid droplets were also measured over a temperature range of 50•C to 200•C under forced convection. Balanced transfer rates were obtained attributed to droplet instability or oscillation within the airflow, demonstrated in associated work with single free-flight droplets. The results are of relevance to drier optimisation and to the optimisation of product characteristics, e.g.; particle strength and essential volatiles-retention, in convective drying.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A consequence of a loss of coolant accident is the damage of adjacent insulation materials (IM). IM may then be transported to the containment sump strainers where water is drawn into the ECCS (emergency core cooling system). Blockage of the strainers by IM lead to an increased pressure drop acting on the operating ECCS pumps. IM can also penetrate the strainers, enter the reactor coolant system and then accumulate in the reactor pressure vessel. An experimental and theoretical study that concentrates on mineral wool fiber transport in the containment sump and the ECCS is being performed. The study entails fiber generation and the assessment of fiber transport in single and multi-effect experiments. The experiments include measurement of the terminal settling velocity, the strainer pressure drop, fiber sedimentation and resuspension in a channel flow and jet flow in a rectangular tank. An integrated test facility is also operated to assess the compounded effects. Each experimental facility is used to provide data for the validation of equivalent computational fluid dynamic models. The channel flow facility allows the determination of the steady state distribution of the fibers at different flow velocities. The fibers are modeled in the Eulerian-Eulerian reference frame as spherical wetted agglomerates. The fiber agglomerate size, density, the relative viscosity of the fluid-fiber mixture and the turbulent dispersion of the fibers all affect the steady state accumulation of fibers at the channel base. In the current simulations, two fiber phases are separately considered. The particle size is kept constant while the density is modified, which affects both the terminal velocity and volume fraction. The relative viscosity is only significant at higher concentrations. The numerical model finds that the fibers accumulate at the channel base even at high velocities; therefore, modifications to the drag and turbulent dispersion forces can be made to reduce fiber accumulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface deposition of dense aerosol particles is of major concern in the nuclear industry for safety assessment. This study presents theoretical investigations and computer simulations of single gas-born U3O8 particles impacting with the in-reactor surface and the fragmentation of small agglomerates. A theoretical model for elasto-plastic spheres has been developed and used to analyse the force-displacement and force-time relationships. The impulse equations, based on Newton's second law, are applied to govern the tangential bouncing behaviour. The theoretical model is then incorporated into the Distinct Element Method code TRUBAL in order to perform computer simulated tests of particle collisions. A comparison of simulated results with both theoretical predictions and experimental measurements is provided. For oblique impacts, the results in terms of the force-displacement relationship, coefficients of restitution, trajectory of the impacting particle, and distribution of kinetic energy and work done during the process of impact are presented. The effects of Poisson's ratio, friction, plastic deformation and initial particle rotation on the bouncing behaviour are also discussed. In the presence of adhesion an elasto-plastic collision model, which is an extension to the JKR theory, is developed. Based on an energy balance equation the critical sticking velocity is obtained. For oblique collisions computer simulated results are used to establish a set of criteria determining whether or not the particle bounces off the target plate. For impact velocities above the critical sticking value, computer simulated results for the coefficients of restitution and rebound angles of the particle are presented. Computer simulations of fracture/fragmentation resulting from agglomerate-wall impact have also been performed, where two randomly generated agglomerates (one monodisperse, the other polydisperse), each consisting of 50 primary particles are used. The effects of impact angle, local structural arrangements close to the impact point, and plastic deformation at the contacts on agglomerate damage are examined. The simulated results show a significant difference in agglomerate strength between the two assemblies. The computer data also shows that agglomerate damage resulting from an oblique impact is determined by the normal velocity component rather than the impact speed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Damage to insulation materials located near to a primary circuit coolant leak may compromise the operation of the emergency core cooling system (ECCS). Insulation material in the form of mineral wool fiber agglomerates (MWFA) maybe transported to the containment sump strainers, where they may block or penetrate the strainers. Though the impact of MWFA on the pressure drop across the strainers is minimal, corrosion products formed over time may also accumulate in the fiber cakes on the strainers, which can lead to a significant increase in the strainer pressure drop and result in cavitation in the ECCS. An experimental and theoretical study performed by the Helmholtz-Zentrum Dresden-Rossendorf and the Hochschule Zittau/Görlitz is investigating the phenomena that maybe observed in the containment vessel during a primary circuit coolant leak. The study entails the generation of fiber agglomerates, the determination of their transport properties in single and multi-effect experiments and the long-term effect that corrosion and erosion of the containment internals by the coolant has on the strainer pressure drop. The focus of this paper is on the verification and validation of numerical models that can predict the transport of MWFA. A number of pseudo-continuous dispersed phases of spherical wetted agglomerates represent the MWFA. The size, density, the relative viscosity of the fluid-fiber agglomerate mixture and the turbulent dispersion all affect how the fiber agglomerates are transported. In the cases described here, the size is kept constant while the density is modified. This definition affects both the terminal velocity and volume fraction of the dispersed phases. Note that the relative viscosity is only significant at high concentrations. Three single effect experiments were used to provide validation data on the transport of the fiber agglomerates under conditions of sedimentation in quiescent fluid, sedimentation in a horizontal flow and suspension in a horizontal flow. The experiments were performed in a rectangular column for the quiescent fluid and a racetrack type channel that provided a near uniform horizontal flow. The numerical models of sedimentation in the column and the racetrack channel found that the sedimentation characteristics are consistent with the experiments. For channel suspension, the heavier fibers tend to accumulate at the channel base even at high velocities, while lighter phases are more likely to be transported around the channel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mineral wool insulation material applied to the primary cooling circuit of a nuclear reactor maybe damaged in the course of a loss of coolant accident (LOCA). The insulation material released by the leak may compromise the operation of the emergency core cooling system (ECCS), as it maybe transported together with the coolant in the form of mineral wool fiber agglomerates (MWFA) suspensions to the containment sump strainers, which are mounted at the inlet of the ECCS to keep any debris away from the emergency cooling pumps. In the further course of the LOCA, the MWFA may block or penetrate the strainers. In addition to the impact of MWFA on the pressure drop across the strainers, corrosion products formed over time may also accumulate in the fiber cakes on the strainers, which can lead to a significant increase in the strainer pressure drop and result in cavitation in the ECCS. Therefore, it is essential to understand the transport characteristics of the insulation materials in order to determine the long-term operability of nuclear reactors, which undergo LOCA. An experimental and theoretical study performed by the Helmholtz-Zentrum Dresden-Rossendorf and the Hochschule Zittau/Görlitz1 is investigating the phenomena that maybe observed in the containment vessel during a primary circuit coolant leak. The study entails the generation of fiber agglomerates, the determination of their transport properties in single and multi-effect experiments and the long-term effects that particles formed due to corrosion of metallic containment internals by the coolant medium have on the strainer pressure drop. The focus of this presentation is on the numerical models that are used to predict the transport of MWFA by CFD simulations. A number of pseudo-continuous dispersed phases of spherical wetted agglomerates can represent the MWFA. The size, density, the relative viscosity of the fluid-fiber agglomerate mixture and the turbulent dispersion all affect how the fiber agglomerates are transported. In the cases described here, the size is kept constant while the density is modified. This definition affects both the terminal velocity and volume fraction of the dispersed phases. Only one of the single effect experimental scenarios is described here that are used in validation of the numerical models. The scenario examines the suspension and horizontal transport of the fiber agglomerates in a racetrack type channel. The corresponding experiments will be described in an accompanying presentation (see abstract of Seeliger et al.).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives - Powdered and granulated particulate materials make up most of the ingredients of pharmaceuticals and are often at risk of undergoing unwanted agglomeration, or caking, during transport or storage. This is particularly acute when bulk powders are exposed to extreme swings in temperature and relative humidity, which is now common as drugs are produced and administered in increasingly hostile climates and are stored for longer periods of time prior to use. This study explores the possibility of using a uniaxial unconfined compression test to compare the strength of caked agglomerates exposed to different temperatures and relative humidities. This is part of a longer-term study to construct a protocol to predict the caking tendency of a new bulk material from individual particle properties. The main challenge is to develop techniques that provide repeatable results yet are presented simply enough to be useful to a wide range of industries. Methods - Powdered sucrose, a major pharmaceutical ingredient, was poured into a split die and exposed to high and low relative humidity cycles at room temperature. The typical ranges were 20–30% for the lower value and 70–80% for the higher value. The outer die casing was then removed and the resultant agglomerate was subjected to an unconfined compression test using a plunger fitted to a Zwick compression tester. The force against displacement was logged so that the dynamics of failure as well as the failure load of the sample could be recorded. The experimental matrix included varying the number of cycles, the amount between the maximum and minimum relative humidity, the height and diameters of the samples, the number of cycles and the particle size. Results - Trends showed that the tensile strength of the agglomerates increased with the number of cycles and also with the more extreme swings in relative humidity. This agrees with previous work on alternative methods of measuring the tensile strength of sugar agglomerates formed from humidity cycling (Leaper et al 2003). Conclusions - The results show that at the very least the uniaxial tester is a good comparative tester to examine the caking tendency of powdered materials, with a simple arrangement and operation that are compatible with the requirements of industry. However, further work is required to continue to optimize the height/ diameter ratio during tests.