8 resultados para Subgrid-scale Modelling
em Aston University Research Archive
Resumo:
A Bayesian procedure for the retrieval of wind vectors over the ocean using satellite borne scatterometers requires realistic prior near-surface wind field models over the oceans. We have implemented carefully chosen vector Gaussian Process models; however in some cases these models are too smooth to reproduce real atmospheric features, such as fronts. At the scale of the scatterometer observations, fronts appear as discontinuities in wind direction. Due to the nature of the retrieval problem a simple discontinuity model is not feasible, and hence we have developed a constrained discontinuity vector Gaussian Process model which ensures realistic fronts. We describe the generative model and show how to compute the data likelihood given the model. We show the results of inference using the model with Markov Chain Monte Carlo methods on both synthetic and real data.
Resumo:
Objectives: The study of aggression and anger in competitive sport relies on accurate and economical measurement via observation, interview and questionnaire. Unfortunately, extant questionnaires have been criticised for having poor validity, are not sport specific, or reflect mood states rather than trait qualities. Therefore, a measure of trait anger and aggressiveness in competitive athletes was developed. Method: A list of statements representing aggressiveness and anger was generated and distributed to competitive athletes from diverse sports. Exploratory and confirmatory analyses were used to verify the theoretically predicted factor structure. Correlations with an extant measure of aggression and anger were used to ascertain concurrent validity. Discriminant validity was tested by comparing males with females, and aggressive with non-aggressive footballers. Results: A 12-item scale (Competitive Aggressiveness and Anger Scale, CAAS) consisting of two subscales was derived using principal component factor analysis with oblimin rotation. Confirmatory factor analysis using structural equation modelling confirmed the overall structure. Test-retest correlation, construct and discriminant validities were good, supporting the utility of the scale as a measure of athlete trait aggressiveness and anger. Conclusions: The CAAS appears to be a useful measure of athletic anger and aggressiveness. Its brevity and ability to discriminate aggressive from non-aggressive athletes should prove useful for future research concerning aggressive behaviour in competitive athletes. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
Not withstanding the high demand of metal powder for automotive and High Tech applications, there are still many unclear aspects of the production process. Only recentlyhas supercomputer performance made possible numerical investigation of such phenomena. This thesis focuses on the modelling aspects of primary and secondary atomization. Initially two-dimensional analysis is carried out to investigate the influence of flow parameters (reservoir pressure and gas temperature principally) and nozzle geometry on final powder yielding. Among the different types, close coupled atomizers have the best performance in terms of cost and narrow size distribution. An isentropic contoured nozzle is introduced to minimize the gas flow losses through shock cells: the results demonstrate that it outperformed the standard converging-diverging slit nozzle. Furthermore the utilization of hot gas gave a promising outcome: the powder size distribution is narrowed and the gas consumption reduced. In the second part of the thesis, the interaction of liquid metal and high speed gas near the feeding tube exit was studied. Both axisymmetric andnon-axisymmetric geometries were simulated using a 3D approach. The filming mechanism was detected only for very small metal flow rates (typically obtained in laboratory scale atomizers). When the melt flow increased, the liquid core overtook the adverse gas flow and entered in the high speed wake directly: in this case the disruption isdriven by sinusoidal surface waves. The process is characterized by fluctuating values of liquid volumes entering the domain that are monitored only as a time average rate: it is far from industrial robustness and capability concept. The non-axisymmetric geometry promoted the splitting of the initial stream into four cores, smaller in diameter and easier to atomize. Finally a new atomization design based on the lesson learned from previous cases simulation is presented.
Resumo:
This study presents a computational fluid dynamic (CFD) study of Dimethyl Ether (DME) gas adsorptive separation and steam reforming (DME-SR) in a large scale Circulating Fluidized Bed (CFB) reactor. The CFD model is based on Eulerian-Eulerian dispersed flow and solved using commercial software (ANSYS FLUENT). Hydrogen is currently receiving increasing interest as an alternative source of clean energy and has high potential applications, including the transportation sector and power generation. Computational fluid dynamic (CFD) modelling has attracted considerable recognition in the engineering sector consequently leading to using it as a tool for process design and optimisation in many industrial processes. In most cases, these processes are difficult or expensive to conduct in lab scale experiments. The CFD provides a cost effective methodology to gain detailed information up to the microscopic level. The main objectives in this project are to: (i) develop a predictive model using ANSYS FLUENT (CFD) commercial code to simulate the flow hydrodynamics, mass transfer, reactions and heat transfer in a large scale dual fluidized bed system for combined gas separation and steam reforming processes (ii) implement a suitable adsorption models in the CFD code, through a user defined function, to predict selective separation of a gas from a mixture (iii) develop a model for dimethyl ether steam reforming (DME-SR) to predict hydrogen production (iv) carry out detailed parametric analysis in order to establish ideal operating conditions for future industrial application. The project has originated from a real industrial case problem in collaboration with the industrial partner Dow Corning (UK) and jointly funded by the Engineering and Physical Research Council (UK) and Dow Corning. The research examined gas separation by adsorption in a bubbling bed, as part of a dual fluidized bed system. The adsorption process was simulated based on the kinetics derived from the experimental data produced as part of a separate PhD project completed under the same fund. The kinetic model was incorporated in FLUENT CFD tool as a pseudo-first order rate equation; some of the parameters for the pseudo-first order kinetics were obtained using MATLAB. The modelling of the DME adsorption in the designed bubbling bed was performed for the first time in this project and highlights the novelty in the investigations. The simulation results were analysed to provide understanding of the flow hydrodynamic, reactor design and optimum operating condition for efficient separation. Bubbling bed validation by estimation of bed expansion and the solid and gas distribution from simulation agreed well with trends seen in the literatures. Parametric analysis on the adsorption process demonstrated that increasing fluidizing velocity reduced adsorption of DME. This is as a result of reduction in the gas residence time which appears to have much effect compared to the solid residence time. The removal efficiency of DME from the bed was found to be more than 88%. Simulation of the DME-SR in FLUENT CFD was conducted using selected kinetics from literature and implemented in the model using an in-house developed user defined function. The validation of the kinetics was achieved by simulating a case to replicate an experimental study of a laboratory scale bubbling bed by Vicente et al [1]. Good agreement was achieved for the validation of the models, which was then applied in the DME-SR in the large scale riser section of the dual fluidized bed system. This is the first study to use the selected DME-SR kinetics in a circulating fluidized bed (CFB) system and for the geometry size proposed for the project. As a result, the simulation produced the first detailed data on the spatial variation and final gas product in such an industrial scale fluidized bed system. The simulation results provided insight in the flow hydrodynamic, reactor design and optimum operating condition. The solid and gas distribution in the CFB was observed to show good agreement with literatures. The parametric analysis showed that the increase in temperature and steam to DME molar ratio increased the production of hydrogen due to the increased DME conversions, whereas the increase in the space velocity has been found to have an adverse effect. Increasing temperature between 200 oC to 350 oC increased DME conversion from 47% to 99% while hydrogen yield increased substantially from 11% to 100%. The CO2 selectivity decreased from 100% to 91% due to the water gas shift reaction favouring CO at higher temperatures. The higher conversions observed as the temperature increased was reflected on the quantity of unreacted DME and methanol concentrations in the product gas, where both decreased to very low values of 0.27 mol% and 0.46 mol% respectively at 350 °C. Increasing the steam to DME molar ratio from 4 to 7.68 increased the DME conversion from 69% to 87%, while the hydrogen yield increased from 40% to 59%. The CO2 selectivity decreased from 100% to 97%. The decrease in the space velocity from 37104 ml/g/h to 15394 ml/g/h increased the DME conversion from 87% to 100% while increasing the hydrogen yield from 59% to 87%. The parametric analysis suggests an operating condition for maximum hydrogen yield is in the region of 300 oC temperatures and Steam/DME molar ratio of 5. The analysis of the industrial sponsor’s case for the given flow and composition of the gas to be treated suggests that 88% of DME can be adsorbed from the bubbling and consequently producing 224.4t/y of hydrogen in the riser section of the dual fluidized bed system. The process also produces 1458.4t/y of CO2 and 127.9t/y of CO as part of the product gas. The developed models and parametric analysis carried out in this study provided essential guideline for future design of DME-SR at industrial level and in particular this work has been of tremendous importance for the industrial collaborator in order to draw conclusions and plan for future potential implementation of the process at an industrial scale.
Resumo:
Fluctuations of liquids at the scales where the hydrodynamic and atomistic descriptions overlap are considered. The importance of these fluctuations for atomistic motions is discussed and examples of their accurate modelling with a multi-space-time-scale fluctuating hydrodynamics scheme are provided. To resolve microscopic details of liquid systems, including biomolecular solutions, together with macroscopic fluctuations in space-time, a novel hybrid atomistic-fluctuating hydrodynamics approach is introduced. For a smooth transition between the atomistic and continuum representations, an analogy with two-phase hydrodynamics is used that leads to a strict preservation of macroscopic mass and momentum conservation laws. Examples of numerical implementation of the new hybrid approach for the multiscale simulation of liquid argon in equilibrium conditions are provided. © 2014 The Author(s) Published by the Royal Society.
Resumo:
Several levels of complexity are available for modelling of wastewater treatment plants. Modelling local effects rely on computational fluid dynamics (CFD) approaches whereas activated sludge models (ASM) represent the global methodology. By applying both modelling approaches to pilot plant and full scale systems, this paper evaluates the value of each method and especially their potential combination. Model structure identification for ASM is discussed based on a full-scale closed loop oxidation ditch modelling. It is illustrated how and for what circumstances information obtained via CFD (computational fluid dynamics) analysis, residence time distribution (RTD) and other experimental means can be used. Furthermore, CFD analysis of the multiphase flow mechanisms is employed to obtain a correct description of the oxygenation capacity of the system studied, including an easy implementation of this information in the classical ASM modelling (e.g. oxygen transfer). The combination of CFD and activated sludge modelling of wastewater treatment processes is applied to three reactor configurations, a perfectly mixed reactor, a pilot scale activated sludge basin (ASB) and a real scale ASB. The application of the biological models to the CFD model is validated against experimentation for the pilot scale ASB and against a classical global ASM model response. A first step in the evaluation of the potential of the combined CFD-ASM model is performed using a full scale oxidation ditch system as testing scenario.
Resumo:
Excepting the Peripheral and Central Nervous Systems, the Immune System is the most complex of somatic systems in higher animals. This complexity manifests itself at many levels from the molecular to that of the whole organism. Much insight into this confounding complexity can be gained through computational simulation. Such simulations range in application from epitope prediction through to the modelling of vaccination strategies. In this review, we evaluate selectively various key applications relevant to computational vaccinology: these include technique that operates at different scale that is, from molecular to organisms and even to population level.
Resumo:
Storyline detection from news articles aims at summarizing events described under a certain news topic and revealing how those events evolve over time. It is a difficult task because it requires first the detection of events from news articles published in different time periods and then the construction of storylines by linking events into coherent news stories. Moreover, each storyline has different hierarchical structures which are dependent across epochs. Existing approaches often ignore the dependency of hierarchical structures in storyline generation. In this paper, we propose an unsupervised Bayesian model, called dynamic storyline detection model, to extract structured representations and evolution patterns of storylines. The proposed model is evaluated on a large scale news corpus. Experimental results show that our proposed model outperforms several baseline approaches.