10 resultados para Structural parameters

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We use molecular dynamics simulations to compare the conformational structure and dynamics of a 21-base pair RNA sequence initially constructed according to the canonical A-RNA and A'-RNA forms in the presence of counterions and explicit water. Our study aims to add a dynamical perspective to the solid-state structural information that has been derived from X-ray data for these two characteristic forms of RNA. Analysis of the three main structural descriptors commonly used to differentiate between the two forms of RNA namely major groove width, inclination and the number of base pairs in a helical twist over a 30 ns simulation period reveals a flexible structure in aqueous solution with fluctuations in the values of these structural parameters encompassing the range between the two crystal forms and more. This provides evidence to suggest that the identification of distinct A-RNA and A'-RNA structures, while relevant in the crystalline form, may not be generally relevant in the context of RNA in the aqueous phase. The apparent structural flexibility observed in our simulations is likely to bear ramifications for the interactions of RNA with biological molecules (e.g. proteins) and non-biological molecules (e.g. non-viral gene delivery vectors). © CSIRO 2009.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The chromium chalcogenide spinels, MCr2X4 (M = Zn, Cd, Hg; X = O, S, Se), have been the subject of considerable interest in recent years. In each case the crystal structure is that of a normal spinel with the chromium ions exclusively occupying the octahedral (B) sites, so that when diamagnetic ions are located at the tetrahedral (A) sites the only magnetic interactions present are those between B-site ions. Despite such apparently simple circumstances a rich variety of magnetic behaviour is exhibited. For the oxides the ground state spin configurations are antiferromagnetic whilst for the selenides ferromagnetic interactions dominate and several authors have drawn attention to the fact that the nature of the dominant interaction is a function of the nearest neighbour chromium - chromium separation. However, at least two of the compounds exhibit spiral structures and it has been proved difficult to account for the various spin configurations within a unified theory of the magnetic interactions involved. More recently, the possibility of formulating a simplified interpretation of the magnetic interactions has been provided by the discovery that the crystal struture of spinels does not always conform to the centrosymmetrical symmetry Fd3m that has been conventionally assumed. The deviation from this symmetry is associated with small < 111> displacements of the octahedrally coordinated metal ions and the structures so obtained are more correctly referred to the non-centrosymmetrical space group F43m. In the present study, therefore, extensive X-ray diffraction data have been collected from four chromium chalcogenide specimens and used to refine the corresponding structural parameters assuming F43m symmetry and also with conventional symmetry. The diffracted intensities from three of the compounds concerned cannot be satisfactorily accounted for on the basis of conventional symmetry and new locations have been found for the chromium ions in these cases. It is shown, however, that these displacements in chromium positions only partially resolve the difficulties in interpreting the magnetic behaviour. A re-examination of the magnetic data from different authors indicates much greater uncertainty in their measurements than they had claimed. By taking this into consideration it is shown that a unified theory of magnetic behaviour for the chromium chalcogenide spinels is a real possibility.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently Homer and Percival have postulated that intermolecular van der Waals dispersion forces can be characterized by three mechanisms. The first arises via the mean square reaction field < R1; 2> due to the transient dipole of a particular solute molecule that is considered situated in a cavity surrounded by solvent molecules; this was characterized by an extended Onsager approach. The second stems from the extra cavity mean square reaction field < R2; 2> of the near neighbour solvent molecules. The third originates from square field electric fields E2BI due to a newly characterized effect in which solute atoms are `buffeted' by the peripheral atoms of adjacent solvent molecules. The present work concerns more detailed studies of the buffeting screening, which is governed by sterically controlled parameter (2T - T)2, where and are geometric structural parameters. The original approach is used to characterise the buffeting shifts induced by large solvent molecules and the approach is found to be inadequate. Consequently, improved methods of calculating and are reported. Using the improved approach it is shown that buffeting is dependent on the nature of the solvent as well as the nature of the solute molecule. Detailed investigation of the buffeting component of the van der Waals chemical shifts of selected solutes in a range of solvents containing either H or Cl as peripheral atoms have enabled the determination of a theoretical acceptable value for the classical screening coefficient B for protons. 1H and 13C resonance studies of tetraethylmethane and 1H, 13C and 29Si resonance studies of TMS have been used to support the original contention that three (< R1; 2> , < R2; 2> and E2BI) components of intermolecular van der Waals dispersion fields are required to characterise vdW chemical shifts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study examined the use of non-standard parameters to investigate the visual field, with particular reference to the detection of glaucomatous visual field loss. Evaluation of the new perimetric strategy for threshold estimation - FASTPAC, demonstrated a reduction in the examination time of normals compared to the standard strategy. Despite an increased within-test variability the FASTPAC strategy produced a similar mean sensitivity to the standard strategy, reducing the effects of patient fatigue. The new technique of Blue-Yellow perimetry was compared to White-White perimetry for the detection of glaucomatous field loss in OHT and POAG. Using a database of normal subjects, confidence limits for normality were constructed to account for the increased between-subject variability with increase in age and eccentricity and for the greater variability of the Blue-Yellow field compared to the White-White field. Effects of individual ocular media absorption had little effect on Blue-Yellow field variability. Total and pattern probability analysis revealed five of 27 OHTs to exhibit Blue-Yellow focal abnormalities; two of these patients subsequently developed White-White loss. Twelve of the 24 POAGs revealed wider and/or deeper Blue-Yellow loss compared with the White-White field. Blue-Yellow perimetry showed good sensitivity and specificity characteristics, however, lack of perimetric experience and the presence of cataract influenced the Blue-Yellow visual field and may confound the interpretation of Blue-Yellow visual field loss. Visual field indices demonstrated a moderate relationship to the structural parameters of the optic nerve head using scanning laser tomography. No abnormalities in Blue-Yellow or Red-Green colour CS was apparent for the OHT patients. A greater vulnerability of the SWS pathway in glaucoma was demonstrated using Blue-Yellow perimetry however predicting which patients may benefit from B-Y perimetric examination is difficult. Furthermore, cataract and the extent of the field loss may limit the extent to which the integrity of the SWS channels can be selectively examined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chalcogenide optical fibers are currently undergoing intensive investigation with the aim of exploiting the excellent glass transmission and nonlinear characteristics in the near- and mid-infrared for several applications. Further enhancement of these properties can be obtained, for a particular application, with optical fibers specifically designed that are capable of providing low effective area together with a properly tailored dispersion, matching the characteristics of the laser sources used to excite nonlinear effects. Suspended-core photonic crystal fibers are ideal candidates for nonlinear applications, providing small-core waveguides with large index contrast and tunable dispersion. In this paper, the dispersion properties of As2S3 suspended-core fibers are numerically analyzed, taking into account, for the first time, all the structural parameters, including the size and the number of the glass bridges. The results show that a proper design of the cladding struts can be exploited to significantly change the fiber properties, altering the maximum value of the dispersion parameter and shifting the zero-dispersion wavelengths over a range of 400 nm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chalcogenide suspended core fibers are a valuable solution to obtain supercontinuum generation of light in the mid-infrared, thanks to glass high transparency, high index contrast, small core diameter and widely-tunable dispersion. In this work the dispersion and nonlinear properties of several chalcogenide suspended core mi-crostructured fibers are numerically evaluated, and the effects of all the structural parameters are investigated. Optimization of the design is carried out to provide a fiber suitable for wide-band supercontinuum generation in the mid-infrared.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis investigated progression of the central 10° visual field with structural changes at the macula in a cross-section of patients with varying degrees of agerelated macular degeneration (AMD). The relationships between structure and function were investigated for both standard and short-wavelength automated perimetry (SWAP). Factors known to influence the measure of visual field progression were considered, including the accuracy of the refractive correction on SWAP thresholds and the learning effect. Techniques of assessing the structure to function relationships between fundus images and the visual field were developed with computer programming and evaluated for repeatability. Drusen quantification of fundus photographs and retro-mode scanning laser ophthalmoscopic images was performed. Visual field progression was related to structural changes derived from both manual and automated methods. Principal Findings: • Visual field sensitivity declined with advancing stage of AMD. SWAP showed greater sensitivity to progressive changes than standard perimetry. • Defects were confined to the central 5°. SWAP defects occurred at similar locations but were deeper and wider than corresponding standard perimetry defects. • The central field became less uniform as severity of AMD increased. SWAP visual field indices of focal loss were of more importance when detecting early change in AMD, than indices of diffuse loss. • The decline in visual field sensitivity over stage of severity of AMD was not uniform, whereas a linear relationship was found between the automated measure of drusen area and visual field parameters. • Perimetry exhibited a stronger relationship with drusen area than other measures of visual function. • Overcorrection of the refraction for the working distance in SWAP should be avoided in subjects with insufficient accommodative facility. • The perimetric learning effect in the 10° field did not differ significantly between normal subjects and AMD patients. • Subretinal deposits appeared more numerous in retro-mode imaging than in fundus photography.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocular dimensions are widely recognised as key variants of refractive error. Previously, accurate depiction of eye shape in vivo was largely restricted by limitations in the imaging techniques available. This thesis describes unique applications of the recently introduced 3-dimensional magnetic resonance imaging (MRI) approach to evaluate human eye shape in a group of young adult subjects (n=76) with a range of ametropia (MSE= -19.76 to +4.38D). Specific MRI derived parameters of ocular shape are then correlated with measures of visual function. Key findings include the significant homogeneity of ocular volume in the anterior eye for a range of refractive errors, whilst significant volume changes occur in the posterior eye as a function of ametropia. Anterior vs. posterior eye differences have also been shown through evaluations of equivalent spherical radius; the posterior 25% cap of the eye was shown to be relatively steeper in myopes compared to emmetropes. Further analyses showed differences in retinal quadrant profiles; assessments of the maximum distance from the retinal surface to the presumed visual axes showed exaggerated growth of the temporal quadrant in myopic eyes. Comparisons of retinal contour values derived from transformation of peripheral refraction data were made with MRI; flatter retinal curvature values were noted when using the MRI technique. A distinctive feature of this work is the evaluation of the relationship between ocular structure and visual function. Multiple aspects of visual function were evaluated through several vehicles: multifocal electroretinogram testing, visual field sensitivity testing, and the use of psychophysical methods to determine ganglion cell density. The results show that many quadrantic structural and functional variations exist. In general, the data could not demonstrate a significant correlation between visual function and associated measures of ocular conformation either within or between myopic and emmetropic groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The X-ray crystal structures of two related trans-N2S2 copper macrocycles are reported. One was isolated with the copper in the divalent form and the other with copper in its univalent form affording a valuable insight into the changes of geometry and metrical parameters that occur during redox processes in macrocyclic copper complexes. A variable temperature NMR study of the copper(I) complex is reported, indicative of a chair-boat conformational change within the alkyl chain backbone of the macrocycle. It was possible to extract the relevant kinetic and thermodynamic parameters (?G‡, 57.8 kJ mol-1; ?H‡, 52.1 kJ mol-1; ?S‡, -19.2 J K-1 mol-1) for this process at 298 K. DFT molecular orbital calculations were used to confirm these observations and to calculate the energy difference (26.2 kJmol-1) between the copper(I) macrocycle in a planar and a distorted tetrahedral disposition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The poor retention and efficacy of instilled drops as a means of delivering drugs to the ophthalmic environment is well-recognised. The potential value of contact lenses as a means of ophthalmic drug delivery, and consequent improvement of pre-corneal retention is one obvious route to the development of a more effective ocular delivery system. Furthermore, the increasing availability and clinical use of daily disposable contact lenses provides the platform for the development of viable single-day use drug delivery devices based on existing materials and lenses. In order to provide a basis for the effective design of such devices, a systematic understanding of the factors affecting the interaction of individual drugs with the lens matrix is required. Because a large number of potential structural variables are involved, it is necessary to achieve some rationalisation of the parameters and physicochemical properties (such as molecular weight, charge, partition coefficients) that influence drug interactions. Ophthalmic dyes and structurally related compounds based on the same core structure were used to investigate these various factors and the way in which they can be used in concert to design effective release systems for structurally different drugs. Initial studies of passive diffusional release form a necessary precursor to the investigation of the features of the ocular environment that over-ride this simple behaviour. Commercially available contact lenses of differing structural classifications were used to study factors affecting the uptake of the surrogate actives and their release under 'passive' conditions. The interaction between active and lens material shows considerable and complex structure dependence, which is not simply related to equilibrium water content. The structure of the polymer matrix itself was found to have the dominant controlling influence on active uptake; hydrophobic interaction with the ophthalmic dye playing a major role. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.