9 resultados para Strontium bismuth niobate
em Aston University Research Archive
Resumo:
Buried, micro-structured waveguides with an equiangular spiral geometry, which can be formed in a lithium niobate crystal by direct femtosecond laser writing, are analysed with the full-vectorial finite element method. The guiding properties of such waveguides are presented.
Resumo:
We study numerically depressed-index cladding, buried, micro-structured optical waveguides that can be formed in a lithium niobate crystal by femtosecond laser writing. We demonstrate to which extent the waveguiding properties can be controlled by the waveguide geometry at the relatively moderate induced refractive index contrasts that are typical of the direct femtosecond inscription.
Resumo:
Lead bismuth eutectic (LBE) is a possible coolant for fast reactors and targets in spallation neutron sources. Its low melting point, high evaporation point, good thermal conductivity, low reactivity, and good neutron yield make it a safe and high performance coolant in radiation environments. The disadvantage is that it is a corrosive medium for most steels and container materials. This study was performed to evaluate the corrosion behavior of the austenitic stainless steel D9 in oxygen controlled LBE. In order to predict the corrosion behavior of steel in this environment detailed analyses have to be performed on the oxide layers formed on these materials and various other relevant materials upon exposure to LBE. In this study the corrosion/oxidation of D9 stainless steel in LBE was investigated in great detail. The oxide layers formed were characterized using atomic force microscopy, magnetic force microscopy, nanoindentation, and scanning electron microscopy with wavelength-dispersive spectroscopy (WDS) to understand the corrosion and oxidation mechanisms of D9 stainless steel in contact with the LBE. What was previously believed to be a simple double oxide layer was identified here to consist of at least 4 different oxide layers. It was found that the inner most oxide layer takes over the grain structure of what used to be the bulk steel material while the outer oxide layer consists of freshly grown oxides with a columnar structure. These results lead to a descriptive model of how these oxide layers grow on this steel under the harsh environments encountered in these applications.
Resumo:
Strontium has been substituted for calcium in the glass series (SiO2)49.46(Na2O)26.38(P2O5)1.07(CaO)23.08x(SrO)x (where x = 0, 11.54, 23.08) to elucidate their underlying atomic-scale structural characteristics as a basis for understanding features related to the bioactivity. These bioactive glasses have been investigated using isomorphic neutron and X-ray diffraction, Sr K-edge EXAFS and solid state 17O, 23Na, 29Si, 31P and 43Ca magic-angle-spinning (MAS) NMR. An effective isomorphic substitution first-order difference function has been applied to the neutron diffraction data, confirming that Ca and Sr behave in a similar manner within the glass network, with residual differences attributed to solely the variation in ionic radius between the two species. The diffraction data provides the first direct experimental evidence of split Ca–O nearest-neighbour correlations in these melt quench bioactive glasses, together with an analogous splitting of the Sr–O correlations; the correlations are attributed to the metal ions correlated either to bridging or to non-bridging oxygen atoms. Triple quantum (3Q) 43Ca MAS NMR corroborates the split Ca–O correlations. Successful simplification of the 2 < r (A) < 3 region via the difference method has also revealed two distinct Na environments. These environments are attributed to sodium correlated either to bridging or to nonbridging oxygen atoms. Complementary multinuclear MAS NMR, Sr K-edge EXAFS and X-ray diffraction data supports the structural model presented. The structural sites present will be intimately related to their release properties in physiological fluids such as plasma and saliva, and hence the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimising material design.
Resumo:
We review our recent work on the numerical design and optimisation of buried, micro-structured waveguides (WGs) that can be formed in a lithium niobate (LiNbO3) crystal by the method of direct femtosecond laser inscription. We also report on the possibility of fabricating such WGs using a high-repetition-rate, chirped-pulse oscillator system. Refractive index contrasts as high as -0.0127 have been achieved for individual modification tracks. The results pave the way for developing micro-structured WGs with low-loss operation across a wide spectral range, extending into the mid-infrared region up to the end of the transparency range of the host material. © 2014 IEEE.
Resumo:
We study numerically depressed-cladding, buried waveguides that can be formed in a lithium niobate crystal by femtosecond laser writing. We demonstrate that the guiding properties can be controlled by the waveguide structural characteristics.
Resumo:
We present an optimization procedure to improve the propagation properties of the depressed cladding, buried micro-structured waveguides formed in a z-cut lithium niobate (LN) crystal by high repetition rate femtosecond (fs) laser writing. It is shown that the propagation wavelength for which the confinement losses of ordinary (O) and extraordinary ordinary (E) polarizations are below 1 dB/cm can be optimized beyond 3 micro meter for hexagonal WG structures with seven rings of tracks.
Resumo:
We describe how the guiding properties of buried, micro-structured waveguides that can be formed in a lithium niobate crystal by direct femtosecond laser writing can be optimized for low-loss operation in the mid-infrared region beyond 3 μm.