3 resultados para Strong solution
em Aston University Research Archive
Resumo:
A study was made of the corrosion behaviour in the ASTM standard Nitric acid and Oxalic acid tests, of two commercial AISI type 304L steels in the as received condition and after various heat treatments. Optical microscopy and SEM, TEM and STEM in conjunction with energy dispersive x-ray analysis, were used to correlate the corrosion behaviour of these steels with their microstructure. Some evidence of phosphorus segregation at grain boundaries was found. The corrosion behaviour at microstructural level was studied by examining on the TEM thin foils of steel that had been exposed to boiling nitric acid. Banding attack in the nitric acid and oxalic acid tests was studied using SEM and EPNA and found to be due to the micro-segregation of chromium and nickel. Using two experimental series of 304L, one a 17% Cr, 91 Ni, steel with phosphorus additions from 0.006% to 0.028%, the other a 20% Cr, 121 Ni steel with boron additions from 0.0011 to 0.00B51. The effect of these elements on corrosion in the nitric acid test was studied. The effect of different cooling rates and different solution treatment temperature on the behaviour of these steels was examined. TEM and STEM in conjunction with energy-dispersive x-ray analysis were again used to study the microstructure of the steels. Phosphorus was found to affect the corrosion behaviour but no effect was found with boron.
Resumo:
Negatively charged globular proteins in solution undergo a condensation upon adding trivalent counterions between two critical concentrations C* and C**, C*
Resumo:
Incorporation of the glycolipid trehalose 6,6′-dibehenate (TDB) into cationic liposomes composed of the quaternary ammonium compound dimethyldioctadecylammonium (DDA) produce an adjuvant system which induces a powerful cell-mediated immune response and a strong antibody response, desirable for a high number of disease targets. We have used differential scanning calorimetry (DSC) to investigate the effect of TDB on the gel-fluid phase transition of DDA liposomes and to demonstrate that TDB is incorporated into DDA liposome bilayers. Transmission Electron Microscopy (TEM) and cryo-TEM confirmed that liposomes were formed when a lipid film of DDA containing small amounts of TDB was hydrated in an aqueous buffer solution at physiological pH. Furthermore, time development of particle size and zeta potential of DDA liposomes incorporating TDB during storage at 4°C and 25°C, indicates that TDB effectively stabilizes the DDA liposomes. Immunization of mice with the mycobacterial fusion protein Ag85B-ESAT-6 in DDA-TDB liposomes induced a strong, specific Th1 type immune response characterized by substantial production of the interferon-γ cytokine and high levels of IgG2b isotype antibodies. The lymphocyte subset releasing the interferon-γ was identified as CD4 T cells.