9 resultados para Streptozotocin

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Multiple low doses of streptozotocin (MSZ) treatment successfully induced diabetes in male TO, MFI and HO lean mice. In contrast however, BALB/c mice failed to develop persistent hyperglycaemia. Single streptozotocin (SSZ) treatment also produced diabetes in TO mice. SSZ treatment however, produced severe weight loss and atrophy of the lymphoid organs. MSZ treatment on the other hand, was not cytotoxic towards lymphoid organs and, whilst there was no loss of body weight, growth rates were reduced in MSZ treated mice. 2. Following sheep red blood cell (SRBC) immunisation of MSZ-treated mice, haemagglutination titres, and numbers of antigen reactive cells and plaque forming cells were all significantly lower than control values. 3. In vitro proliferation of spleen cells in response to phytohaemagglutinin (PHA) and conconavalin A (ConA) was found to be significantly depressed in MSZ treated mice. However, T-lymphocyte responses were intact when the mice were not overtly hyperglycaemic. In contrast, however, T cell independent responses to lipopolysaccharide (LPS) were generally intact throughout the study period. 4. Cell mediated immunity, as assessed by measurements of delayed (Type IV) hypersensitivity, was also depressed in MSZ treated mice. This suppression could be reversed by insulin therapy. 5. Both natural killer cell activity and antibody dependent cell mediated cytotoxicity were found to be significantly increased in MSZ treated mice. 6. Histological examination of the pancreas showed the presence of insulitis, in MSZ treated mice, and cytotoxic effector cells against obese mice islet cells (as assessed by 51Cr release) and HIT-T15 cells (as assessed by insulin secretion) were found to be significantly increased. Furthermore, these effector cells were also found to show increased proliferation in the presence of homogenates prepared from HIT-T15 cells. Examination of the Sera from MSZ treated mice showed that islet cell surface antibodies were present.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diabetic nephropathy is characterized by excessive extracellular matrix accumulation resulting in renal scarring and end-stage renal disease. Previous studies have suggested that transglutaminase type 2, by formation of its protein crosslink product epsilon-(gamma-glutamyl)lysine, alters extracellular matrix homeostasis, causing basement membrane thickening and expansion of the mesangium and interstitium. To determine whether transglutaminase inhibition can slow the progression of chronic experimental diabetic nephropathy over an extended treatment period, the inhibitor NTU281 was given to uninephrectomized streptozotocin-induced diabetic rats for up to 8 months. Effective transglutaminase inhibition significantly reversed the increased serum creatinine and albuminuria in the diabetic rats. These improvements were accompanied by a fivefold decrease in glomerulosclerosis and a sixfold reduction in tubulointerstitial scarring. This was associated with reductions in collagen IV accumulation by 4 months, along with reductions in collagens I and III by 8 months. This inhibition also decreased the number of myofibroblasts, suggesting that tissue transglutaminase may play a role in myofibroblast transformation. Our study suggests that transglutaminase inhibition ameliorates the progression of experimental diabetic nephropathy and can be considered for clinical application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. Diabetic nephropathy is the leading cause of end-stage kidney failure worldwide. It is characterized by excessive extracellular matrix accumulation. Transforming growth factor beta 1 (TGF-ß1) is a fibrogenic cytokine playing a major role in the healing process and scarring by regulating extracellular matrix turnover, cell proliferation and epithelial mesanchymal transdifferentiation. Newly synthesized TGF-ß is released as a latent, biologically inactive complex. The cross-linking of the large latent TGF-ß to the extracellular matrix by transglutaminase 2 (TG2) is one of the key mechanisms of recruitment and activation of this cytokine. TG2 is an enzyme catalyzing an acyl transfer reaction leading to the formation of a stable e(?-glutamyl)-lysine cross-link between peptides.Methods. To investigate if changes in TG activity can modulate TGF-ß1 activation, we used the mink lung cell bioassay to assess TGF-ß activity in the streptozotocin model of diabetic nephropathy treated with TG inhibitor NTU281 and in TG2 overexpressing opossum kidney (OK) proximal tubular epithelial cells.Results. Application of the site-directed TG inhibitor NTU281 caused a 25% reduction in kidney levels of active TGF-ß1. Specific upregulation of TG2 in OK proximal tubular epithelial cells increased latent TGF-ß recruitment and activation by 20.7% and 19.7%, respectively, in co-cultures with latent TGF-ß binding protein producing fibroblasts.Conclusions. Regulation of TG2 directly influences the level of active TGF-ß1, and thus, TG inhibition may exert a renoprotective effect by targeting not only a direct extracellular matrix deposition but also TGF-ß1 activation and recruitment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Improved methods of insulin delivery are required for the treatment of insulin-dependent diabetes mellitus (IDDM) to achieve a more physiological profile of glucose homeostasis. Somatic cell gene therapy offers the prospect that insulin could be delivered by an autologous cell implant, engineered to secrete insulin in response to glucose. This study explores the feasibility of manipulating somatic cells to behave as a surrogate insulin-secreting β-cells. Initial studies were conducted using mouse pituitary AtT20 cells as a model, since these cells possess an endogenous complement of enzymes capable of processing proinsulin to mature insulin. Glucose sensitive insulin secretion was conferred to these cells by transfection with plasmids containing the human preproinsulin gene (hppI-1) and the GLUT2 gene for the glucose transporter isoform 2. Insulin secretion was responsive to changes in the glucose concentration up to about 50μM. Further studies to up-rate this glucose sensitivity into the mM range will require manipulation of the hexokinase and glucokinase enzymes. Intraperitoneal implantation of the manipulated AtT20 cells into athymic nude mice with streptozotocin-induced diabetes resulted in decreased plasma glucose concentrations. The cells formed vascularised tumours in vivo which were shown to contain insulin-secreting cells. To achieve proinsulin processing in non-endocrine cells, co-transfection with a suitable enzyme, or mutagenesis of the proinsulin itself are necessary. The mutation of the human preproinsulin gene to the consensus sequence for cleavage by the subtilisin-like serine protease, furin, was carried out. Co-transfection of human fibroblasts with wild-type proinsulin and furin resulted in 58% conversion to mature insulin by these cells. Intraperitoneal implantation of the mature-insulin secreting human fibroblasts into the diabetic nude mouse animal model gave less encouraging results than the AtT20 cells, apparently due to poor vascularisation. Cell aggregations removed from the mice at autopsy were shown to contain insulin secreting cells only at the periphery. This thesis provides evidence that it is possible to construct, by cellular engineering, a glucose-sensitive insulin-secreting surrogate β-cell. Therefore, somatic cell gene therapy offers a feasible alternative for insulin delivery in IDDM patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Impaired insulin action (insulin resistance) is a key factor in the pathogenesis of diabetes mellitus. To investigate therapeutic targets against insulin resistance, this thesis explores the mechanism of action of pharmacological agents and exogenous peptides known or suspected to modify insulin action. These included leptin, a hormone primarily involved in the regulation of body weight; sibutramine, an antiobesity agent; plant-derived compounds (pinitol and chamaemeloside) and agents known to affect insulin sensitivity, e.g. metformin, tolbutamide, thiazolidinediones, vanadyl sulphate and thioctic acid. Models used for investigation included the L6 skeletal muscle cell line and isolated skeletal muscles. In vivo studies were undertaken to investigate glycaemia, insulinaemia, satiety and body weight in streptozotocin-induced diabetic mice and obese (ob/ob) mice. Leptin acutely altered insulin action in skeletal muscle cells via the short form of the leptin receptor. This direct action of leptin was mediated via a pathway involving PI 3-kinase but not Jak2. The active metabolites of sibutramine had antidiabetic properties in vivo and directly improved insulin sensitivity in vitro. This effect appeared to be conducted via a non-PI 3-kinase-mediated increase in protein synthesis with facilitated glucose transport, and was independent of the serotonin and noradrenaline reuptake inhibition produced by sibutramine. Pinitol (a methyl inositol) had an insulin mimetic effect and was an effective glucose-lowering agent in insulinopenic states, acting directly on skeletal muscle. Conversely chamaemeloside appeared to improve glucose tolerance without directly altering glucose transport. Metformin directly increased basal glucose uptake independently of PI 3-kinase, possibly via an increase in the intrinsic activity of glucose transporters. Neither tolbutamide nor thiazolidinediones directly altered insulin sensitivity in L6 skeletal muscle cells: however vanadyl sulphate and thioctic acid increased glucose transport but appeared to exert toxic effects at therapeutic concentrations. Examination of glucose transport in skeletal muscle in this thesis has identified various components of post-receptor insulin signalling pathways which may be targeted to ameliorate insulin resistance. Type 2 Diabetes Mellitus Obesity L6 Skeletal Muscle Cells Glucose Transport Insulin Signalling 2

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently available treatments for insulin-dependent diabetes mellitus are often inadequate in terms of both efficacy and patient compliance. Gene therapy offers the possibility of a novel and improved method by which exogenous insulin can be delivered to a patient. This was approached in the present study by constructing a novel insulin-secreting cell line. For the purposes of this work immortalized cell lines were used. Fibroblasts and pituitary cells were transfected with the human preproisinulin gene to create stable lines of proinsulin- and insulin-secreting cells. The effect of known β-cell secretagogues on these cells were investigated, and found mostly to have no stimulatory effect, although IBMX, arginine and ZnSO4 each increased the rate of secretion. Cyclosporin (CyA) is currently the immunosuppresant of choice for transplant recipients; the effect of this treatment on endogenous β-cell function was assessed both in vivo and in vitro. Therapeutic doses of CyA were found to reduce plasma insulin concentrations and to impair glucose tolerance. The effect of immunoisolation on insulin release by HIT T15 cells was also investigated. The presence of an alginate membrane was found to severely impair insulin release. For the first implantation of the insulin-secreting cells, the animal model selected was the athymic nude mouse. This animal is immunoincompetent, and hence the use of an immunosuppressive regimen is circumvented. Graft function was assessed by measurement of plasma human C peptide concentrations, using a highly specific assay. Intraperitoneal implantation of genetically manipulated insulin-secreting pituitary cells into nude mice subsequently treated with a large dose of streptozotocin (STZ) resulted in a significantly delayed onset of hyperglycaemia when compared to control animals. Consumption of a ZnSO4 solution was shown to increase human C peptide release by the implant. Ensuing studies in nude mice examined the efficacy of different implantation sites, and included histochemical examination of the tumours. Aldehyde fuchsin staining and immunocytochemical processing demonstrated the presence of insulin containing cells within the excised tissue. Following initial investigations in nude mice, implantation studies were performed in CyA-immunosuppressed normal and STZ-diabetic mice. Graft function was found to be less efficacious, possibly due to the subcutaneous implantation site, or to the immunosuppresive regimen. Histochemical and transmission electron microscopic analysis of the tumour-like cell clusters found at autopsy revealed necrosis of cells at the core, but essentially normal cell morphology, with dense secretory granules in peripheral cells. The thesis provides evidence that gene therapy offers a feasibly new approach to insulin delivery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Diabetic nephropathy (DN) is the leading cause of chronic kidney failure, however the mechanisms underlying the characteristic expansion of the extracellular matrix (ECM) in diabetic kidneys remain controversial and unclear. In non-diabetic kidney scarring the protein crosslinking enzyme tissue transglutaminase (tTg) has been implicated in this process by the formation of increased ε-(γ-glutamyl)lysine bonds between ECM components in both experimental and human disease. Studies in db/db diabetic mice and in streptozotocin-treated rats have suggested a similar mechanism, although the relevance of this to human disease has not been addressed. Methods: We have undertaken a retrospective analysis of renal biopsies from 16 DN patients with type 2 diabetes mellitus using an immunohistochemical and immunofl uorescence approach, with tTg and ε-(γ-glutamyl)lysine crosslink quantified by confocal microscopy. Results: Immunofl uorescent analysis of human biopsies (confocal microscopy) showed increases in levels of tTg (+1,266%, p <0.001) and ε-(γ-glutamyl)lysine (+486%, p <0.001) in kidneys with DN compared to normal. Changes were predominantly in the extracellular periglomerular and peritubular areas. tTg staining correlated with e-(?-glutamyl)lysine (r = 0.615, p <0.01) and renal scarring (Masson's trichrome, r = 0.728, p <0.001). Significant changes in e-(?-glutamyl)lysine were also noted intracellularly in some (=5%) tubular epithelial cells. This is consistent with cells undergoing a novel transglutaminase-mediated cell death process in response to Ca influx and subsequent activation of intracellular tTg. Conclusion: Changes in tTg and ε-(γ- glutamyl)lysine occur in human DN. Cellular export of tTg may therefore be a factor in the perpetuation of DN by crosslinking and stabilisation of the ECM, while intracellular activation may lead to cell death contributing towards tubular atrophy. Copyright © 2004 S. Karger AG, Basel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diabetic nephropathy (DN) is characterized by an early, progressive expansion and sclerosis of the glomerular mesangium leading to glomerulosclerosis. This is associated with parallel fibrosis of the renal interstitium. In experimental renal scarring, the protein cross-linking enzyme, tissue transglutaminase (tTg), is up-regulated and externalized causing an increase in its crosslink product, e-(γ-glutamyl)-lysine, in the extracellular space. This potentially contributes to the extracellular matrix (ECM) accumulation central to tissue fibrosis by increasing deposition and inhibiting breakdown. We investigated if a similar mechanism may contribute to the ECM expansion characteristic of DN using the rat streptozotocin model over 120 days. Whole kidney e-(γ-glutamyl)-lysine (HPLC analysis) was significantly increased from Day 90 (+337%) and peaked at Day 120 (+650%) (p <0.05). Immunofluorescence showed this increase to be predominantly extracellular in the peritubular interstitial space, but also in individual glomeruli. Total kidney transglutaminase (Tg) was not elevated. However, using a Tg in situ activity assay, increased Tg was detected in both the extracellular interstitial space and glomeruli by Day 60, with a maximal 53% increase at Day 120 (p <0.05). Using a specific anti-tTg antibody, immunohistochemistry showed a similar increase in extracellular enzyme in the interstitium and glomeruli. To biochemically characterize glomerular changes, glomeruli were isolated by selective sieving. In line with whole kidney measurement, there was an increase in glomerular e-(γ-glutamyl) lysine (+ 361%); however, in the glomeruli this was associated with increases in Tg activity (+228%) and tTg antigen by Western blotting (+215%). Importantly, the ratio of glomerular e-(γ-glutamyl) lysine to hydroxyproline increased by 2.2-fold. In DN, changes in the kidney result in increased translocation of tTg to the extracellular environment where high Ca2+ and low GTP levels allow its activation. In the tubulointerstitium this is independent of increased tTg production, but dependent in the glomerulus. This leads to excessive ECM cross-linking, contributing to the renal fibrosis characteristic of progressive DN.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Progression and severity of type 1 diabetes is dependent upon inflammatory induction of nitric oxide production and consequent pancreatic β-cell damage. Glucocorticoids (GCs) are highly effective anti-inflammatory agents but have been precluded in type 1 diabetes and in islet transplantation protocols because they exacerbated insulin resistance and suppressed β-cell insulin secretion at the high-doses employed clinically. In contrast, physiological-range elevation of GC action within β-cells ameliorated lipotoxic β-cell failure in transgenic mice overexpressing the intracellular enzyme 11β-hydroxysteroid dehydrogenase type 1 (MIP-HSD1tg/+ mice). Here, we tested the hypothesis that elevated β-cell 11beta-HSD1 protects against the β-cell destruction elicited by streptozotocin (STZ), a toxin that dose-dependently mimics aspects of inflammatory and autoimmune β-cell destruction. MIP-HSD1tg/+ mice exhibited an episodic protection from the severe hyperglycemia caused by a single high dose of STZ associated with higher and sustained β-cell survival, maintained β-cell replicative potential, higher plasma and islet insulin levels, reduced inflammatory macrophage infiltration and increased anti-inflammatory T regulatory cell content. MIP-HSD1tg/+ mice also completely resisted mild hyperglycemia and insulitis induced by multiple low-dose STZ administration. In vitro, MIP-HSD1tg/+ islets exhibited attenuated STZ-induced nitric oxide production, an effect reversed with a specific 11beta-HSD1 inhibitor. GC regeneration selectively within β-cells protects against inflammatory β-cell destruction, suggesting therapeutic targeting of 11beta-HSD1 may ameliorate processes that exacerbate type 1 diabetes and that hinder islet transplantation.