28 resultados para Straw industries
em Aston University Research Archive
Resumo:
The paper examines howfar foreign manufacturing investment in UK industries, together with the spatial agglomeration of those industries, affect technical efficiency. The paper links research on the estimation of technical efficiency,with those literatures demonstrating the economies associated with foreign direct investment and spatial agglomeration. The methodology involves estimation of a stochastic production frontier with random components associated with industry technical inefficiency, and a standard error. The paper also explores whether the degree of foreign involvement has a greater impact on technical efficiency where the domestic industry sector is characterized by comparatively high productivity and spatial agglomeration. The policy implications of the analysis are discussed.
Resumo:
This paper extends the existing evidence on the relationship between Information and Communication Technology (ICT) and productivity using data from the entire Iranian manufacturing sector (22 industries) over the period 1993?1999. Estimates of efficiency using panel data confirm the positive and significant impact of ICT investments on productivity. Our finding is consistent with the most recent literatures in the context of developed and a few middle-income developing countries. Human capital and increasing ICT capital are probably two determining factors in gaining the positive payoffs from ICT investments in Iran.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
This doctoral thesis originates from an observational incongruence between the perennial aims and aspirations of economic endeavour and actually recorded outcomes, which frequently seem contrary to those intended and of a recurrent, cyclical type. The research hypothesizes parallel movement between unstable business environments through time, as expressed by periodically fluctuating levels of economic activity, and the precipitation rates of industrial production companies. A major problem arose from the need to provide theoretical and empirical cohesion from the conflicting, partial and fragmented interpretations of several hundred historians and economists, without which the research question would remain unanswerable. An attempt to discover a master cycle, or superimposition theorem, failed, but was replaced by minute analysis of both the concept of cycles and their underlying data-bases. A novel technique of congregational analysis emerged, resulting in an integrated matrix of numerical history. Two centuries of industrial revolution history in England and Wales was then explored and recomposed for the first time in a single account of change, thereby providing a factual basis for the matrix. The accompanying history of the Birmingham area provided the context of research into the failure rates and longevities of firms in the city's staple metal industries. Sample specific results are obtained for company longevities in the Birmingham area. Some novel presentational forms are deployed for results of a postal questionnaire to surviving firms. Practical demonstration of the new index of national economic activity (INEA) in relation to company insolvencies leads to conclusions and suggestions for further applications of research into the tempo of change, substantial Appendices support the thesis and provide a compendium of information covering immediately contiguous domains.
Resumo:
This thesis presents the design, fabrication and testing of novel grating based Optical Fibre Sensor (OFS) systems being interrogated using “off the shelf” interrogation systems, with the eventual development of marketable commercial systems at the forefront of the research. Both in the industrial weighing and aerospace industries, there has been a drive to investigate the feasibility of using optical fibre sensors being deployed where traditionally their electrical or mechanical counterparts would traditionally have been. Already, in the industrial weighing industry, commercial operators are deploying OFS-based Weigh-In-Motion (WIM) systems. Likewise, in the aerospace industry, OFS have been deployed to monitor such parameters as load history, impact detection, structural damage, overload detection, centre of gravity and the determination of blade shape. Based on the intrinsic properties of fibre Bragg gratings (FBGs) and Long Period Fibre Gratings (LPFGs), a number of novel OFS-based systems have been realised. Experimental work has shown that in the case of static industrial weighing, FBGs can be integrated with current commercial products and used to detect applied loads. The work has also shown that embedding FBGs in e-glass, to form a sensing patch, can result in said patches being bonded to rail track, forming the basis of an FBG-based WIM system. The results obtained have been sufficiently encouraging to the industrial partner that this work will be progressed beyond the scope of the work presented in this thesis. Likewise, and to the best of the author’s knowledge, a novel Bragg grating based systems for aircraft fuel parameter sensing has been presented. FBG-based pressure sensors have been shown to demonstrate good sensitivity, linearity and repeatability, whilst LPFG-based systems have demonstrated a far greater sensitivity when compared to FBGs, as well the advantage of being potentially able to detect causes of fuel adulteration based on their sensitivity to refractive index (RI). In the case of the LPFG-based system, considerable work remains to be done on the mechanical strengthening to improve its survivability in a live aircraft fuel tank environment. The FBG system has already been developed to an aerospace compliant prototype and is due to be tested at the fuel testing facility based at Airbus, Filton, UK. It is envisaged by the author that in both application areas, continued research in this area will lead to the eventual development of marketable commercial products.
Resumo:
Aim of the work is the implementation of a low temperature reforming (LT reforming) unit downstream the Haloclean pyrolyser in order to enhance the heating value of the pyrolysis gas. Outside the focus of this work was to gain a synthesis gas quality for further use. Temperatures between 400 °C and 500 °C were applied. A commercial pre-reforming catalyst on a nickel basis from Südchemie was chosen for LT reforming. As biogenic feedstock wheat straw has been used. Pyrolysis of wheat straw at 450 °C by means of Haloclean pyrolysis leads to 28% of char, 50% of condensate and 22% of gas. The condensate separates in a water phase and an organic phase. The organic phase is liquid, but contains viscous compounds. These compounds could underlay aging and could lead to solid tars which can cause post processing problems. Therefore, the implementation of a catalytic reformer is not only of interest from an energetic point of view, it is generally interesting for tar conversion purposes after pyrolysis applications. By using a fixed bed reforming unit at 450–490 °C and space velocities about 3000 l/h the pyrolysis gas volume flow could be increased to about 58%. This corresponds to a decrease of the yields of condensates by means of catalysis up to 17%, the yield of char remains unchanged, since pyrolysis conditions are the same. The heating value in the pyrolysis gas could be increased by the factor of 1.64. Hydrogen concentrations up to 14% could be realised.
Resumo:
Sewage sludge was pyrolysed with 40% mixed wood, 40% rapeseed and 40% straw. The reason for the mixture of different biomass is to investigate the impact of co-pyrolysis on the upper phase of bio-oil in terms of changes to composition, elemental analysis, viscosity, water content, pH, higher heating value and acid number that could impact on their applications. The biomass was pyrolysed in a laboratory at 450 °C and bio-oil was collected from two cooling traps. The bio-oil obtained from co-pyrolysis of sewage sludge with wood, rapeseed and straw was analysed for composition using the gas chromatography mass spectrometry. The upper phase from the co-pyrolysis process was also characterised for ultimate analysis, higher heating values, water content, viscosity, pH and acid number. There was an increase in the amount of upper phase produced with co-pyrolysis of 40% rapeseed. It was also found that the upper phase from sewage sludge with mixed wood has the highest viscosity, acid number and lowest pH. The bio-oil containing 40% straw was found to have a pH of 6.5 with a very low acid number while the 40% rapeseed was found to have no acid number. Sewage sludge with 40% rapeseed was found to have the highest energy content of 34.8 MJ/kg, 40% straw has 32.5 MJ/kg while the 40% mixed wood pyrolysis oil has the lowest energy content of 31.3 MJ/kg. The 40% rapeseed fraction was found to have the highest water content of 8.2% compared to other fractions.
Resumo:
The motorsport industry is a high value-added and highly innovative business sector. The UK’s leading racing car manufacturers are world class centres of research, development and engineering. However, individual firms in the sector do not have the range and depth of capabilities to compete independently in motorsport’s dynamic and competitive environment. Industry attention has therefore progressively focused on how networks of collaborating firms can work together to develop new products, improve business processes and reduce costs. This report presents findings from a three year Cardiff Business School study which examined the ways in which firms collaborate as part of wider networks. The research involved gathering data from over 120 firms in the UK and Italian motorsport sectors.
Resumo:
The 5th framework programme research project ACCESSLAB researches the capability of candidate countries’ regions to deal with asymmetric shocks. Its goal is to provide analysts and policy makers with research results relevant to the process of enlargement. The project takes a broad and comparative view of labour market adjustments to address these issues. It examines the topic from both a macroeconomic and microeconomic viewpoint. It considers different adjustment mechanisms in depth and compares results with the European Union. It draws on a) the experiences in transition countries in the last decade, b) the experience of German integration and c) the experiences of border regions to gain insights on the likely regional labour market effects of accession of the candidate countries.
Resumo:
The aim of this study is to characterise and compare fast pyrolysis product yields from straw, high yielding perennial grasses and hardwoods. Feedstocks selected for this study include: wheat straw (Triticum aestivum), switch grass (Panicum virgatum), miscanthus (Miscanthus x giganteus), willow short rotation coppice (Salix viminalis) and beech wood (Fagus sylvatica). The experimental work is divided into two sections: analytical (TGA and Py-GC-MS) and laboratory scale processing using a continuously fed bubbling fluidized bed reactor with a capacity of up to 1 kg/h. Pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) has been used to quantify pyrolysis products and simulate fast pyrolysis heating rates, in order to study potential key light and medium volatile decomposition products found in these feedstocks. Py-GC-MS quantification results show that the highest yields of furfural (0.57 wt.%), 2-furanmethanol (0.18 wt.%), levoglucosan (0.73 wt.%), 1,2-benzenediol (0.27 wt.%) and 2-methoxy-4-vinylphenol (0.38 wt.%) were found in switch grass, and that willow SRC produced the highest yield of phenol (0.33 wt.%). The bio-oil higher heating value was highest for switch grass (22.3 MJ/kg). Water content within the bio-oil is highest in the straw and perennial grasses and lowest in the hardwood willow SRC. The high bio-oil and char heating value and low water content found in willow SRC, makes this crop an attractive energy feedstock for fast pyrolysis processing, if the associated production costs and harvest yields can be maintained at current reported values. The bio-oil from switch grass has the highest potential for the production of high value chemicals. © 2013 Elsevier Ltd. All rights reserved.