11 resultados para Stratified Turbulent Flow
em Aston University Research Archive
Resumo:
Measurements were carried out to determine local coefficients of heat transfer in short lengths of horizontal pipe, and in the region of an discontinuity in pipe diameter. Laminar, transitional and turbulent flow regimes were investigated, and mixtures of propylene glycol and water were used in the experiments to give a range of viscous fluids. Theoretical and empirical analyses were implemented to find how the fundamental mechanism of forced convection was modified by the secondary effects of free convection, temperature dependent viscosity, and viscous dissipation. From experiments with the short tube it was possible to determine simple empirical relationships describing the axial distribution of the local 1usselt number and its dependence on the Reynolds and Prandtl numbers. Small corrections were made to account for the secondary effects mentioned above. Two different entrance configurations were investigated to demonstrate how conditions upstream could influence the heat transfer coefficients measured downstream In experiments with a sudden contraction in pipe diameter the distribution of local 1u3se1t number depended on the Prandtl number of the fluid in a complicated way. Graphical data is presented describing this dependence for a range of fluids indicating how the local Nusselt number varied with the diameter-ratio. Ratios up to 3.34:1 were considered. With a sudden divergence in pipe diameter, it was possible to derive the axial distribution of the local Nusse1t number for a range of Reynolds and Prandtl numbers in a similar way to the convergence experiments. Difficulty was encountered in explaining some of the measurements obtained at low Reynolds numbers, and flow visualization techniques wore used to determine the complex flow patterns which could lead to the anomalous results mentioned. Tests were carried out with divergences up to 1:3.34 to find the way in which the local Nusselt number varied with the diameter ratio, and a few experiments were carried out with very large ratios up .to 14.4. A limited amount of theoretical analysis of the 'divergence' system was carried out to substantiate certain explanations of the heat transfer mechanisms postulated.
Resumo:
A numerical continuation method has been carried out seeking solutions for two distinct flow configurations, planar Couette flow (PCF) and laterally heated flow in a vertical slot (LHF). We found that the spanwise vortex solution in LHF identifies a new solution in PCF. The vortical structure of our new solution has the shape of a hairpin observed ubiquitously in high-Reynolds-number turbulent flow, and we believe this discovery may provide the paradigm for a hierarchical organization of coherent structures in turbulent shear layers.
Resumo:
The work described in this thesis has been concerned with exploring the potential uses of ultrasound in Nuclear Magnetic Resonance (NMR) spectroscopy, The NMR spectra of liquids provide detailed structural information that may be deduced from the chemical shifts and spin-spin coupling, that are evident in the narrow resonances, arising from some of the nuclear broadening interactions being reduced to zero. In the solid state, all of the nuclear broadening interactions are present and broad lines in the NMR spectrum are observed. Current techniques employed to reduce the line widths in solids are based on coherent averaging techniques such as MAS NMR1,2 which can remove first order interactions. Recently DOR3 and DAS4 have become available to remove higher order interactions. SINNMR (Sonically Induced Narrowing of the NMR spectra of solids) has been reported by Homer et al5 and developed by Homer and Howard6 to reduce the line widths of solids. The basis of their work is the proposal that a colloidal suspension of solid particles can be made to move like large molecules by using ultrasonic agitation. The advantage of the technique is that the particles move incoherently removing all of the nuclear interactions responsible for broad lines. This thesis describes work on the extension of SINNMR by showing that the line width of 27AI and 11B for the glass Na20/B203/AI203 can be reduced by placing solid particles in a colloidal suspension. Further line width reduction is possible by applying ultrasound, at 2 MHz, of sufficient intensity. It is proposed that a cavitation field is responsible for imparting sufficient rotational motion to the solid particles to partially average the nuclear interactions responsible for broad lines. Rapid stirring of the colloidal suspension generates turbulent flow, however, the motion is insufficient to narrow the line widths for 27AI in the glass. Investigations of sonochemical reactions for in situ rate measurements by NMR have been made. 8y using the Weissler reaction7, it has been shown that ultrasonic cavitation is possible up to 10MHz. Preliminary studies have been carried out into the rate of ultrasonic polymerisation of methylmethacrylate by NMR. Long range order in liquid crystals can imposed when they are aligned in the presence a magnetic field. The degree of alignment can be monitored by NMR using, for example a deuterated solute added to the liquid crystal8. Ultrasonic streaming can then be employed to deflect the directors of the liquid crystal from their equilibrium position, resulting in a change In the NMR spectrum. The angle of deflection has been found for the thermotropic liquid crystal (I35) to be ca, 35° and for the lyotropic (ZLI-1167) to be ca, 20°, Mechanical stirring can used to re- orientate the liquid crystal but was found to give a smaller deflection, In a separate study, that did not use ultrasound, it has been found that the signal to noise ratio of 13C NMR signals can be enhanced by rapidly stirring a Iiquid. Accelerating the diffusion of nuclei out of the coil region enables M0 to be re-established more rapidly than the normal relaxation process. This allows the pulse repetition rate to be reduced without saturating the spin system. The influence of varying the relaxation delay, acquisition time and inter-pulse delay have been studied and parameters optimised. By studying cholesterol the technique was found to be most effective for nuclei with long relaxation times, such as quaternary carbon sites. Key Worde: NMR, Ulf.rasciund, 1,.lqi.fi!:l cryllltalt!h SCll1C1otlemlstryl I!r1hano~d algnflllf
Resumo:
Agitating liquids in unbaffled stirred tank leads to the formation of a vortex in the region of the impeller shaft when operating in the turbulent flow regime. A numerical model is presented here that captures such a vortex. The volume of fluid model, a multiphase flow model was employed in conjunction with a multiple reference frame model and the shear stress turbulence model. The dimensions of the tank considered here, were 0.585 m for the liquid depth and tank diameter with a 0.2925 m diameter impeller at a height of 0.2925 m. The impeller considered was an eight-bladed paddle type agitator that was rotating with an angular velocity of 7.54 rad s (72 rpm) giving a Reynolds number of 10 and Froude number of 0.043. Preliminary results of a second investigation into the effect of liquid phase properties on the vortex formed are also presented. © 2006 Elsevier B.V. All rights reserved.
Resumo:
A consequence of a loss of coolant accident is that the local insulation material is damaged and maybe transported to the containment sump where it can penetrate and/or block the sump strainers. An experimental and theoretical study, which examines the transport of mineral wool fibers via single and multi-effect experiments is being performed. This paper focuses on the experiments and simulations performed for validation of numerical models of sedimentation and resuspension of mineral wool fiber agglomerates in a racetrack type channel. Three velocity conditions are used to test the response of two dispersed phase fiber agglomerates to two drag correlations and to two turbulent dispersion coefficients. The Eulerian multiphase flow model is applied with either one or two dispersed phases.
Resumo:
A numerical continuation method is carried out in a homotopy space connecting two different flows, the Plane Couette Flow (PCF) and the Laterally Heated Flow in a vertical slot (LHF). This numerical continuation method enables us to obtain an exact steady solution in PCF. The new solution has the shape of hairpin vortices (HVS: hairpin vortex solution), which is observed ubiquitously in turbulent shear flows.
Resumo:
A consequence of a loss of coolant accident is the damage of adjacent insulation materials (IM). IM may then be transported to the containment sump strainers where water is drawn into the ECCS (emergency core cooling system). Blockage of the strainers by IM lead to an increased pressure drop acting on the operating ECCS pumps. IM can also penetrate the strainers, enter the reactor coolant system and then accumulate in the reactor pressure vessel. An experimental and theoretical study that concentrates on mineral wool fiber transport in the containment sump and the ECCS is being performed. The study entails fiber generation and the assessment of fiber transport in single and multi-effect experiments. The experiments include measurement of the terminal settling velocity, the strainer pressure drop, fiber sedimentation and resuspension in a channel flow and jet flow in a rectangular tank. An integrated test facility is also operated to assess the compounded effects. Each experimental facility is used to provide data for the validation of equivalent computational fluid dynamic models. The channel flow facility allows the determination of the steady state distribution of the fibers at different flow velocities. The fibers are modeled in the Eulerian-Eulerian reference frame as spherical wetted agglomerates. The fiber agglomerate size, density, the relative viscosity of the fluid-fiber mixture and the turbulent dispersion of the fibers all affect the steady state accumulation of fibers at the channel base. In the current simulations, two fiber phases are separately considered. The particle size is kept constant while the density is modified, which affects both the terminal velocity and volume fraction. The relative viscosity is only significant at higher concentrations. The numerical model finds that the fibers accumulate at the channel base even at high velocities; therefore, modifications to the drag and turbulent dispersion forces can be made to reduce fiber accumulation.
Resumo:
An outline of the state space of planar Couette flow at high Reynolds numbers (Re<105) is investigated via a variety of efficient numerical techniques. It is verified from nonlinear analysis that the lower branch of the hairpin vortex state (HVS) asymptotically approaches the primary (laminar) state with increasing Re. It is also predicted that the lower branch of the HVS at high Re belongs to the stability boundary that initiates a transition to turbulence, and that one of the unstable manifolds of the lower branch of HVS lies on the boundary. These facts suggest HVS may provide a criterion to estimate a minimum perturbation arising transition to turbulent states at the infinite Re limit. © 2013 American Physical Society.
Resumo:
An alternative approach to the modelling of solid-liquid and gas-liquid-solid flows for a 5:1 height to width aspect ratio bubble column is presented here. A modified transport equation for the volume fraction of a dispersed phase has been developed for the investigation of turbulent buoyancy driven flows (Chem. Eng. Proc., in press). In this study, a modified transport equation has been employed for discrete phase motion considering both solid-liquid and gas-liquid-solid flows. The modelling of the three-phase flow in a bubble column was achieved in the following case: injecting a slug of solid particles into the column for 10 s at a velocity of 0.1 m s-1 and then the gas phase flow was initiated with a superficial gas velocity of 0.02 cm s-1. © 2003 Elsevier B.V. All rights reserved.
Resumo:
Using the analogy between lateral convection of heat and the two-phase flow in bubble columns, alternative turbulence modelling methods were analysed. The k-ε turbulence and Reynolds stress models were used to predict the buoyant motion of fluids where a density difference arises due to the introduction of heat or a discrete phase. A large height to width aspect ratio cavity was employed in the transport of heat and it was shown that the Reynolds stress model with the use of velocity profiles including the laminar flow solution resulted in turbulent vortices developing. The turbulence models were then applied to the simulation of gas-liquid flow for a 5:1 height to width aspect ratio bubble column. In the case of a gas superficial velocity of 0.02 m s-1 it was determined that employing the Reynolds stress model yielded the most realistic simulation results. © 2003 Elsevier B.V. All rights reserved.
Resumo:
Mixing phenomena observed when the flow rate in a single loop of the primary circuit is changed can influence the operation of pressurized water reactor (PWR) by inducing local gradients of boron concentration or coolant temperature. Analysis of one-dimensional Laser Doppler Anemometry (LDA) measurements during the start-up and shutdown of pump on a single loop of the ROCOM test facility has been performed. The effect of a step change and a ramped change in the flow rate on the axial and azimuthal velocities was examined. Numerical simulations were also performed for the step change in the flow rate that gave quantitative agreement with the axial velocities. Phenomenological agreement was made on the turbulent kinetic energy; however, observed values were a factor of 2.5 less than the turbulent kinetic energy derived from the measurements. © 2007.