6 resultados para Stock portfolio
em Aston University Research Archive
Resumo:
The techniques and insights from two distinct areas of financial economic modelling are combined to provide evidence of the influence of firm size on the volatility of stock portfolio returns. Portfolio returns are characterized by positive serial correlation induced by the varying levels of non-synchronous trading among the component stocks. This serial correlation is greatest for portfolios of small firms. The conditional volatility of stock returns has been shown to be well represented by the GARCH family of statistical processes. Using a GARCH model of the variance of capitalization-based portfolio returns, conditioned on the autocorrelation structure in the conditional mean, striking differences related to firm size are uncovered.
Resumo:
During 1999 and 2000 a large number of articles appeared in the financial press which argued that the concentration of the FTSE 100 had increased. Many of these reports suggested that stock market volatility in the UK had risen, because the concentration of its stock markets had increased. This study undertakes a comprehensive measurement of stock market concentration using the FTSE 100 index. We find that during 1999, 2000 and 2001 stock market concentration was noticeably higher than at any other time since the index was introduced. When we measure the volatility of the FTSE 100 index we do not find an association between concentration and its volatility. When we examine the variances and covariance’s of the FTSE 100 constituents we find that security volatility appears to be positively related to concentration changes but concentration and the size of security covariances appear to be negatively related. We simulate the variance of four versions of the FTSE 100 index; in each version of the index the weighting structure reflects either an equally weighted index, or one with levels of low, intermediate or high concentration. We find that moving from low to high concentration has very little impact on the volatility of the index. To complete the study we estimate the minimum variance portfolio for the FTSE 100, we then compare concentration levels of this index to those formed on the basis of market weighting. We find that realised FTSE index weightings are higher than for the minimum variance index.
Resumo:
Purpose – The purpose of this paper is to investigate the impact of foreign exchange and interest rate changes on US banks’ stock returns. Design/methodology/approach – The approach employs an EGARCH model to account for the ARCH effects in daily returns. Most prior studies have used standard OLS estimation methods with the result that the presence of ARCH effects would have affected estimation efficiency. For comparative purposes, the standard OLS estimation method is also used to measure sensitivity. Findings – The findings are as follows: under the conditional t-distributional assumption, the EGARCH model generated a much better fit to the data although the goodness-of-fit of the model is not entirely satisfactory; the market index return accounts for most of the variation in stock returns at both the individual bank and portfolio levels; and the degree of sensitivity of the stock returns to interest rate and FX rate changes is not very pronounced despite the use of high frequency data. Earlier results had indicated that daily data provided greater evidence of exposure sensitivity. Practical implications – Assuming that banks do not hedge perfectly, these findings have important financial implications as they suggest that the hedging policies of the banks are not reflected in their stock prices. Alternatively, it is possible that different GARCH-type models might be more appropriate when modelling high frequency returns. Originality/value – The paper contributes to existing knowledge in the area by showing that ARCH effects do impact on measures of sensitivity.
Resumo:
A two-factor no-arbitrage model is used to provide a theoretical link between stock and bond market volatility. While this model suggests that short-term interest rate volatility may, at least in part, drive both stock and bond market volatility, the empirical evidence suggests that past bond market volatility affects both markets and feeds back into short-term yield volatility. The empirical modelling goes on to examine the (time-varying) correlation structure between volatility in the stock and bond markets and finds that the sign of this correlation has reversed over the last 20 years. This has important implications far portfolio selection in financial markets. © 2005 Elsevier B.V. All rights reserved.
Resumo:
This thesis presents research within empirical financial economics with focus on liquidity and portfolio optimisation in the stock market. The discussion on liquidity is focused on measurement issues, including TAQ data processing and measurement of systematic liquidity factors (FSO). Furthermore, a framework for treatment of the two topics in combination is provided. The liquidity part of the thesis gives a conceptual background to liquidity and discusses several different approaches to liquidity measurement. It contributes to liquidity measurement by providing detailed guidelines on the data processing needed for applying TAQ data to liquidity research. The main focus, however, is the derivation of systematic liquidity factors. The principal component approach to systematic liquidity measurement is refined by the introduction of moving and expanding estimation windows, allowing for time-varying liquidity co-variances between stocks. Under several liability specifications, this improves the ability to explain stock liquidity and returns, as compared to static window PCA and market average approximations of systematic liquidity. The highest ability to explain stock returns is obtained when using inventory cost as a liquidity measure and a moving window PCA as the systematic liquidity derivation technique. Systematic factors of this setting also have a strong ability in explaining a cross-sectional liquidity variation. Portfolio optimisation in the FSO framework is tested in two empirical studies. These contribute to the assessment of FSO by expanding the applicability to stock indexes and individual stocks, by considering a wide selection of utility function specifications, and by showing explicitly how the full-scale optimum can be identified using either grid search or the heuristic search algorithm of differential evolution. The studies show that relative to mean-variance portfolios, FSO performs well in these settings and that the computational expense can be mitigated dramatically by application of differential evolution.
Resumo:
We examine contemporaneous jumps (cojumps) among individual stocks and a proxy for the market portfolio. We show, through a Monte Carlo study, that using intraday jump tests and a coexceedance criterion to detect cojumps has a power similar to the cojump test proposed by Bollerslev et al. (2008). However, we also show that we should not expect to detect all common jumps comprising a cojump when using such coexceedance based detection methods. Empirically, we provide evidence of an association between jumps in the market portfolio and cojumps in the underlying stocks. Consistent with our Monte Carlo evidence, moderate numbers of stocks are often detected to be involved in these (systematic) cojumps. Importantly, the results suggest that market-level news is able to generate simultaneous large jumps in individual stocks. We also find evidence of an association between systematic cojumps and Federal Funds Target Rate announcements. © 2013 Elsevier B.V.