18 resultados para Steering columns.

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

How does the non-executant state ensure that its agents are fulfilling their obligations to deliver nationally determined policies? In the case of elected local government in England and Wales, this function is carried out by the Audit Commission (AC) for Local Authorities and the Health Service for England and Wales. Since being established in 1983, it is the means by which local authorities are held to account by central government, both for its own purposes and on behalf of other interested stakeholders. Although the primary function of the AC is to ensure that local authorities are fulfilling their obligations, it does so by using different methods. By acting as a regulator, an independent expert, an opinion former and a mediator, the AC steers local authorities to ensure that they are compliant with the regulatory regime and are implementing legislation properly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The initial aim of this project was to improve the performance of a chromatographic bioreactor-separator (CBRS). In such a system, a dilute enzyme solution is pumped continuously through a preparative chromatographic column, while pulses of substrate are periodically injected on to the column. Enzymic reaction and separation are therefore performed in a single unit operation. The chromatographic columns used were jacketed glass columns ranging from 1 to 2 metres long with an internal diameter of 1.5 cm. Linking these columns allowed 1, 2, 3 and 4 metre long CBRS systems to be constructed. The hydrolysis of lactose in the presence of β~galactosidase was the reaction of study. From previous work at Aston University, there appeared to be no difficulties in achieving complete lactose hydrolysis in a CBRS. There did, however, appear to be scope for improving the separative performance, so this was adopted as an initial goal. Reducing the particle size of the stationary phase was identified as a way of achieving this improvement. A cation exchange resin was selected which had an average particle size of around half that previously used when studying this reaction. A CBRS system was developed which overcame the operational problems (such as high pressure drop development) associated with use of such a particle size. A significant improvement in separative power was achieved. This was shown by an increase in the number of theoretical plates (N) from about 500 to about 3000 for a 2 metre long CBRS, coupled with higher resolution. A simple experiment with the 1 metre column showed that combined bioreaction and separation was achievable in this system. Having improved the separative performance of the system, the factors affecting enzymic reaction in a CBRS were investigated; including pulse volume and the degree of mixing between enzyme and substrate. The progress of reaction in a CBRS was then studied. This information was related to the interaction of reaction and separation over the reaction zone. The effect of injecting a pulse over a length of time as in CBRS operation was simulated by fed batch experiments. These experiments were performed in parallel with normal batch experiments where the substrate is mixed almost instantly with the enzyme. The batch experiments enabled samples to be taken every minute and revealed that reaction is very rapid. The hydrodynamic characteristics of the two injector configurations used in CBRS construction were studied using Magnetic Resonance Imaging, combined with hydrodynamic calculations. During the optimisation studies, galactooligosaccharides (GOS) were detected as intermediates in the hydrolysis process. GOS are valuable products with potential and existing applications in food manufacture (as nutraceuticals), medicine and drug targeting. The focus of the research was therefore turned to GOS production. A means of controlling reaction to arrest break down of GOS was required. Raising temperature was identified as a possible means of achieving this within a CBRS. Studies were undertaken to optimise the yield of oligosaccharides, culminating in the design, construction and evaluation of a Dithermal Chromatographic Bioreactor-separator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liquid-liquid extraction has long been known as a unit operation that plays an important role in industry. This process is well known for its complexity and sensitivity to operation conditions. This thesis presents an attempt to explore the dynamics and control of this process using a systematic approach and state of the art control system design techniques. The process was studied first experimentally under carefully selected. operation conditions, which resembles the ranges employed practically under stable and efficient conditions. Data were collected at steady state conditions using adequate sampling techniques for the dispersed and continuous phases as well as during the transients of the column with the aid of a computer-based online data logging system and online concentration analysis. A stagewise single stage backflow model was improved to mimic the dynamic operation of the column. The developed model accounts for the variation in hydrodynamics, mass transfer, and physical properties throughout the length of the column. End effects were treated by addition of stages at the column entrances. Two parameters were incorporated in the model namely; mass transfer weight factor to correct for the assumption of no mass transfer in the. settling zones at each stage and the backmixing coefficients to handle the axial dispersion phenomena encountered in the course of column operation. The parameters were estimated by minimizing the differences between the experimental and the model predicted concentration profiles at steady state conditions using non-linear optimisation technique. The estimated values were then correlated as functions of operating parameters and were incorporated in·the model equations. The model equations comprise a stiff differential~algebraic system. This system was solved using the GEAR ODE solver. The calculated concentration profiles were compared to those experimentally measured. A very good agreement of the two profiles was achieved within a percent relative error of ±2.S%. The developed rigorous dynamic model of the extraction column was used to derive linear time-invariant reduced-order models that relate the input variables (agitator speed, solvent feed flowrate and concentration, feed concentration and flowrate) to the output variables (raffinate concentration and extract concentration) using the asymptotic method of system identification. The reduced-order models were shown to be accurate in capturing the dynamic behaviour of the process with a maximum modelling prediction error of I %. The simplicity and accuracy of the derived reduced-order models allow for control system design and analysis of such complicated processes. The extraction column is a typical multivariable process with agitator speed and solvent feed flowrate considered as manipulative variables; raffinate concentration and extract concentration as controlled variables and the feeds concentration and feed flowrate as disturbance variables. The control system design of the extraction process was tackled as multi-loop decentralised SISO (Single Input Single Output) as well as centralised MIMO (Multi-Input Multi-Output) system using both conventional and model-based control techniques such as IMC (Internal Model Control) and MPC (Model Predictive Control). Control performance of each control scheme was. studied in terms of stability, speed of response, sensitivity to modelling errors (robustness), setpoint tracking capabilities and load rejection. For decentralised control, multiple loops were assigned to pair.each manipulated variable with each controlled variable according to the interaction analysis and other pairing criteria such as relative gain array (RGA), singular value analysis (SVD). Loops namely Rotor speed-Raffinate concentration and Solvent flowrate Extract concentration showed weak interaction. Multivariable MPC has shown more effective performance compared to other conventional techniques since it accounts for loops interaction, time delays, and input-output variables constraints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work has been to study the behaviour and performance of a batch chromatographic column under simultaneous bioreaction and separation conditions for several carbohydrate feedstocks. Four bioreactions were chosen, namely the hydrolysis of sucrose to glucose and fructose using the enzyme invertase, the hydrolysis of inulin to fructose and glucose using inulinase, the hydrolysis of lactose to glucose and galactose using lactase and the isomerization of glucose to fructose using glucose isomerase. The chromatographic columns employed were jacketed glass columns ranging from 1 m to 2 m long and the internal diameter ranging from 0.97 cm to 1.97 cm. The stationary phase used was a cation exchange resin (PUROLITE PCR-833) in the Ca2+ form for the hydrolysis and the Mg2+ form for the isomerization reactions. The mobile phase used was a diluted enzyme solution which was continuously pumped through the chromatographic bed. The substrate was injected at the top of the bed as a pulse. The effect of the parameters pulse size, the amount of substrate solution introduced into the system corresponding to a percentage of the total empty column volume (% TECV), pulse concentration, eluent flowrate and the enzyme activity of the eluent were investigated. For the system sucrose-invertase complete conversions of substrate were achieved for pulse sizes and pulse concentrations of up to 20% TECV and 60% w/v, respectively. Products with purity above 90% were obtained. The enzyme consumption was 45% of the amount theoretically required to produce the same amount of product as in a conventional batch reactor. A value of 27 kg sucrose/m3 resin/h for the throughput of the system was achieved. The systematic investigation of the factors affecting the performance of the batch chromatographic bioreactor-separator was carried out by employing a factorial experimental procedure. The main factors affecting the performance of the system were the flowrate and enzyme activity. For the system inulin-inulinase total conversions were also obtained for pulses sizes of up to 20 % TECV and a pulse concentration of 10 % w/v. Fructose rich fractions with 100 % purity and representing up to 99.4 % of the total fructose generated were obtained with an enzyme consumption of 32 % of the amount theoretically required to produce the same amount of product in a conventional batch reactor. The hydrolysis of lactose by lactase was studied in the glass columns and also in an SCCR-S unit adapted for batch operation, in co-operation with Dr. Shieh, a fellow researcher in the Chemical Engineering and Applied Chemistry Department at Aston University. By operating at up to 30 % w/v lactose feed concentrations complete conversions were obtained and the purities of the products generated were above 90%. An enzyme consumption of 48 % of the amount theoretically required to produce the same amount of product in a conventional batch reactor was achieved. On working with the system glucose-glucose isomerase, which is a reversible reaction, the separation obtained with the stationary phase conditioned in the magnesium form was very poor although the conversion obtained was compatible with those for conventional batch reactors. By working with a mixed pulse of enzyme and substrate, up to 82.5 % of the fructose generated with a purity of 100 % was obtained. The mathematical modelling and computer simulation of the batch chromatographic bioreaction-separation has been performed on a personal computer. A finite difference method was used to solve the partial differential equations and the simulation results showed good agreement with the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research concerns the development and application of an analytical computer program, SAFE-ROC, that models material behaviour and structural behaviour of a slender reinforced concrete column that is part of an overall structure and is subjected to elevated temperatures as a result of exposure to fire. The analysis approach used in SAFE-RCC is non-linear. Computer calculations are used that take account of restraint and continuity, and the interaction of the column with the surrounding structure during the fire. Within a given time step an iterative approach is used to find a deformed shape for the column which results in equilibrium between the forces associated with the external loads and internal stresses and degradation. Non-linear geometric effects are taken into account by updating the geometry of the structure during deformation. The structural response program SAFE-ROC includes a total strain model which takes account of the compatibility of strain due to temperature and loading. The total strain model represents a constitutive law that governs the material behaviour for concrete and steel. The material behaviour models employed for concrete and steel take account of the dimensional changes caused by the temperature differentials and changes in the material mechanical properties with changes in temperature. Non-linear stress-strain laws are used that take account of loading to a strain greater than that corresponding to the peak stress of the concrete stress-strain relation, and model the inelastic deformation associated with unloading of the steel stress-strain relation. The cross section temperatures caused by the fire environment are obtained by a preceding non-linear thermal analysis, a computer program FIRES-T.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research is concerned with the application of the computer simulation technique to study the performance of reinforced concrete columns in a fire environment. The effect of three different concrete constitutive models incorporated in the computer simulation on the structural response of reinforced concrete columns exposed to fire is investigated. The material models differed mainly in respect to the formulation of the mechanical properties of concrete. The results from the simulation have clearly illustrated that a more realistic response of a reinforced concrete column exposed to fire is given by a constitutive model with transient creep or appropriate strain effect The assessment of the relative effect of the three concrete material models is considered from the analysis by adopting the approach of a parametric study, carried out using the results from a series of analyses on columns heated on three sides which produce substantial thermal gradients. Three different loading conditions were used on the column; axial loading and eccentric loading both to induce moments in the same sense and opposite sense to those induced by the thermal gradient. An axially loaded column heated on four sides was also considered. The computer modelling technique adopted separated the thermal and structural responses into two distinct computer programs. A finite element heat transfer analysis was used to determine the thermal response of the reinforced concrete columns when exposed to the ISO 834 furnace environment. The temperature distribution histories obtained were then used in conjunction with a structural response program. The effect of the occurrence of spalling on the structural behaviour of reinforced concrete column is also investigated. There is general recognition of the potential problems of spalling but no real investigation into what effect spalling has on the fire resistance of reinforced concrete members. In an attempt to address the situation, a method has been developed to model concrete columns exposed to fire which incorporates the effect of spalling. A total of 224 computer simulations were undertaken by varying the amounts of concrete lost during a specified period of exposure to fire. An array of six percentages of spalling were chosen for one range of simulation while a two stage progressive spalling regime was used for a second range. The quantification of the reduction in fire resistance of the columns against the amount of spalling, heating and loading patterns, and the time at which the concrete spalls appears to indicate that it is the amount of spalling which is the most significant variable in the reduction of fire resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the 1980s UK government enthusiasm for market reforms has reconfigured the nature and scope of public services. Initially the marketisation of public services changed how public services were provided, increasingly market reforms and pro business policies have also modified the formation and understanding of public policy problematics and how they ought to be resolved. This is particularly noticeable when markets work imperfectly or even fail. UK governments have shown their reluctance to employ regulatory instruments to change the behaviour of companies preferring instead to make use of softer interventions, by focusing on providing advice for consumers and urging individuals to act responsibly. The dilemmas of this approach are explored by discussing the UK's former Labour government's (1997–2010) response to the increase in the incidence of obesity and related health complications.