3 resultados para Statisticians
em Aston University Research Archive
Resumo:
Since researchers and academic institutions are increasingly evaluated based on their publication record in peer reviewed journals, it is crucial to assess how the statistics community perceives statistics journals. This study presents four subjective quality metrics of statistics journals as expressed by different segments of statisticians. Based on a worldwide sample of 2,190 statisticians, our findings indicate that the research interest and geographic origin of the researcher have a significant impact on journal perceptions, which are highly correlated with a journal's total number of citations.
Resumo:
Discriminant analysis (also known as discriminant function analysis or multiple discriminant analysis) is a multivariate statistical method of testing the degree to which two or more populations may overlap with each other. It was devised independently by several statisticians including Fisher, Mahalanobis, and Hotelling ). The technique has several possible applications in Microbiology. First, in a clinical microbiological setting, if two different infectious diseases were defined by a number of clinical and pathological variables, it may be useful to decide which measurements were the most effective at distinguishing between the two diseases. Second, in an environmental microbiological setting, the technique could be used to study the relationships between different populations, e.g., to what extent do the properties of soils in which the bacterium Azotobacter is found differ from those in which it is absent? Third, the method can be used as a multivariate ‘t’ test , i.e., given a number of related measurements on two groups, the analysis can provide a single test of the hypothesis that the two populations have the same means for all the variables studied. This statnote describes one of the most popular applications of discriminant analysis in identifying the descriptive variables that can distinguish between two populations.
Resumo:
Citation information: Armstrong RA, Davies LN, Dunne MCM & Gilmartin B. Statistical guidelines for clinical studies of human vision. Ophthalmic Physiol Opt 2011, 31, 123-136. doi: 10.1111/j.1475-1313.2010.00815.x ABSTRACT: Statistical analysis of data can be complex and different statisticians may disagree as to the correct approach leading to conflict between authors, editors, and reviewers. The objective of this article is to provide some statistical advice for contributors to optometric and ophthalmic journals, to provide advice specifically relevant to clinical studies of human vision, and to recommend statistical analyses that could be used in a variety of circumstances. In submitting an article, in which quantitative data are reported, authors should describe clearly the statistical procedures that they have used and to justify each stage of the analysis. This is especially important if more complex or 'non-standard' analyses have been carried out. The article begins with some general comments relating to data analysis concerning sample size and 'power', hypothesis testing, parametric and non-parametric variables, 'bootstrap methods', one and two-tail testing, and the Bonferroni correction. More specific advice is then given with reference to particular statistical procedures that can be used on a variety of types of data. Where relevant, examples of correct statistical practice are given with reference to recently published articles in the optometric and ophthalmic literature.