22 resultados para Statistical analysis methods
em Aston University Research Archive
Resumo:
This article explains first, the reasons why a knowledge of statistics is necessary and describes the role that statistics plays in an experimental investigation. Second, the normal distribution is introduced which describes the natural variability shown by many measurements in optometry and vision sciences. Third, the application of the normal distribution to some common statistical problems including how to determine whether an individual observation is a typical member of a population and how to determine the confidence interval for a sample mean is described.
Resumo:
In this second article, statistical ideas are extended to the problem of testing whether there is a true difference between two samples of measurements. First, it will be shown that the difference between the means of two samples comes from a population of such differences which is normally distributed. Second, the 't' distribution, one of the most important in statistics, will be applied to a test of the difference between two means using a simple data set drawn from a clinical experiment in optometry. Third, in making a t-test, a statistical judgement is made as to whether there is a significant difference between the means of two samples. Before the widespread use of statistical software, this judgement was made with reference to a statistical table. Even if such tables are not used, it is useful to understand their logical structure and how to use them. Finally, the analysis of data, which are known to depart significantly from the normal distribution, will be described.
Resumo:
Multiple regression analysis is a complex statistical method with many potential uses. It has also become one of the most abused of all statistical procedures since anyone with a data base and suitable software can carry it out. An investigator should always have a clear hypothesis in mind before carrying out such a procedure and knowledge of the limitations of each aspect of the analysis. In addition, multiple regression is probably best used in an exploratory context, identifying variables that might profitably be examined by more detailed studies. Where there are many variables potentially influencing Y, they are likely to be intercorrelated and to account for relatively small amounts of the variance. Any analysis in which R squared is less than 50% should be suspect as probably not indicating the presence of significant variables. A further problem relates to sample size. It is often stated that the number of subjects or patients must be at least 5-10 times the number of variables included in the study.5 This advice should be taken only as a rough guide but it does indicate that the variables included should be selected with great care as inclusion of an obviously unimportant variable may have a significant impact on the sample size required.
Resumo:
This book is aimed primarily at microbiologists who are undertaking research and who require a basic knowledge of statistics to analyse their experimental data. Computer software employing a wide range of data analysis methods is widely available to experimental scientists. The availability of this software, however, makes it essential that investigators understand the basic principles of statistics. Statistical analysis of data can be complex with many different methods of approach, each of which applies in a particular experimental circumstance. Hence, it is possible to apply an incorrect statistical method to data and to draw the wrong conclusions from an experiment. The purpose of this book, which has its origin in a series of articles published in the Society for Applied Microbiology journal ‘The Microbiologist’, is an attempt to present the basic logic of statistics as clearly as possible and therefore, to dispel some of the myths that often surround the subject. The 28 ‘Statnotes’ deal with various topics that are likely to be encountered, including the nature of variables, the comparison of means of two or more groups, non-parametric statistics, analysis of variance, correlating variables, and more complex methods such as multiple linear regression and principal components analysis. In each case, the relevant statistical method is illustrated with examples drawn from experiments in microbiological research. The text incorporates a glossary of the most commonly used statistical terms and there are two appendices designed to aid the investigator in the selection of the most appropriate test.
Resumo:
Firstly, we numerically model a practical 20 Gb/s undersea configuration employing the Return-to-Zero Differential Phase Shift Keying data format. The modelling is completed using the Split-Step Fourier Method to solve the Generalised Nonlinear Schrdinger Equation. We optimise the dispersion map and per-channel launch power of these channels and investigate how the choice of pre/post compensation can influence the performance. After obtaining these optimal configurations, we investigate the Bit Error Rate estimation of these systems and we see that estimation based on Gaussian electrical current systems is appropriate for systems of this type, indicating quasi-linear behaviour. The introduction of narrower pulses due to the deployment of quasi-linear transmission decreases the tolerance to chromatic dispersion and intra-channel nonlinearity. We used tools from Mathematical Statistics to study the behaviour of these channels in order to develop new methods to estimate Bit Error Rate. In the final section, we consider the estimation of Eye Closure Penalty, a popular measure of signal distortion. Using a numerical example and assuming the symmetry of eye closure, we see that we can simply estimate Eye Closure Penalty using Gaussian statistics. We also see that the statistics of the logical ones dominates the statistics of the logical ones dominates the statistics of signal distortion in the case of Return-to-Zero On-Off Keying configurations.
Resumo:
The use of quantitative methods has become increasingly important in the study of neuropathology and especially in neurodegenerative disease. Disorders such as Alzheimer's disease (AD) and the frontotemporal dementias (FTD) are characterized by the formation of discrete, microscopic, pathological lesions which play an important role in pathological diagnosis. This chapter reviews the advantages and limitations of the different methods of quantifying pathological lesions in histological sections including estimates of density, frequency, coverage, and the use of semi-quantitative scores. The sampling strategies by which these quantitative measures can be obtained from histological sections, including plot or quadrat sampling, transect sampling, and point-quarter sampling, are described. In addition, data analysis methods commonly used to analysis quantitative data in neuropathology, including analysis of variance (ANOVA), polynomial curve fitting, multiple regression, classification trees, and principal components analysis (PCA), are discussed. These methods are illustrated with reference to quantitative studies of a variety of neurodegenerative disorders.
Resumo:
In some studies, the data are not measurements but comprise counts or frequencies of particular events. In such cases, an investigator may be interested in whether one specific event happens more frequently than another or whether an event occurs with a frequency predicted by a scientific model.
Resumo:
In any investigation in optometry involving more that two treatment or patient groups, an investigator should be using ANOVA to analyse the results assuming that the data conform reasonably well to the assumptions of the analysis. Ideally, specific null hypotheses should be built into the experiment from the start so that the treatments variation can be partitioned to test these effects directly. If 'post-hoc' tests are used, then an experimenter should examine the degree of protection offered by the test against the possibilities of making either a type 1 or a type 2 error. All experimenters should be aware of the complexity of ANOVA. The present article describes only one common form of the analysis, viz., that which applies to a single classification of the treatments in a randomised design. There are many different forms of the analysis each of which is appropriate to the analysis of a specific experimental design. The uses of some of the most common forms of ANOVA in optometry have been described in a further article. If in any doubt, an investigator should consult a statistician with experience of the analysis of experiments in optometry since once embarked upon an experiment with an unsuitable design, there may be little that a statistician can do to help.
Resumo:
1. Pearson's correlation coefficient only tests whether the data fit a linear model. With large numbers of observations, quite small values of r become significant and the X variable may only account for a minute proportion of the variance in Y. Hence, the value of r squared should always be calculated and included in a discussion of the significance of r. 2. The use of r assumes that a bivariate normal distribution is present and this assumption should be examined prior to the study. If Pearson's r is not appropriate, then a non-parametric correlation coefficient such as Spearman's rs may be used. 3. A significant correlation should not be interpreted as indicating causation especially in observational studies in which there is a high probability that the two variables are correlated because of their mutual correlations with other variables. 4. In studies of measurement error, there are problems in using r as a test of reliability and the ‘intra-class correlation coefficient’ should be used as an alternative. A correlation test provides only limited information as to the relationship between two variables. Fitting a regression line to the data using the method known as ‘least square’ provides much more information and the methods of regression and their application in optometry will be discussed in the next article.
Resumo:
PCA/FA is a method of analyzing complex data sets in which there are no clearly defined X or Y variables. It has multiple uses including the study of the pattern of variation between individual entities such as patients with particular disorders and the detailed study of descriptive variables. In most applications, variables are related to a smaller number of ‘factors’ or PCs that account for the maximum variance in the data and hence, may explain important trends among the variables. An increasingly important application of the method is in the ‘validation’ of questionnaires that attempt to relate subjective aspects of a patients experience with more objective measures of vision.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
We present a data based statistical study on the effects of seasonal variations in the growth rates of the gastro-intestinal (GI) parasitic infection in livestock. The alluded growth rate is estimated through the variation in the number of eggs per gram (EPG) of faeces in animals. In accordance with earlier studies, our analysis too shows that rainfall is the dominant variable in determining EPG infection rates compared to other macro-parameters like temperature and humidity. Our statistical analysis clearly indicates an oscillatory dependence of EPG levels on rainfall fluctuations. Monsoon recorded the highest infection with a comparative increase of at least 2.5 times compared to the next most infected period (summer). A least square fit of the EPG versus rainfall data indicates an approach towards a super diffusive (i. e. root mean square displacement growing faster than the square root of the elapsed time as obtained for simple diffusion) infection growth pattern regime for low rainfall regimes (technically defined as zeroth level dependence) that gets remarkably augmented for large rainfall zones. Our analysis further indicates that for low fluctuations in temperature (true on the bulk data), EPG level saturates beyond a critical value of the rainfall, a threshold that is expected to indicate the onset of the nonlinear regime. The probability density functions (PDFs) of the EPG data show oscillatory behavior in the large rainfall regime (greater than 500 mm), the frequency of oscillation, once again, being determined by the ambient wetness (rainfall, and humidity). Data recorded over three pilot projects spanning three measures of rainfall and humidity bear testimony to the universality of this statistical argument. © 2013 Chattopadhyay and Bandyopadhyay.
Resumo:
We report results of an experimental study, complemented by detailed statistical analysis of the experimental data, on the development of a more effective control method of drug delivery using a pH sensitive acrylic polymer. New copolymers based on acrylic acid and fatty acid are constructed from dodecyl castor oil and a tercopolymer based on methyl methacrylate, acrylic acid and acryl amide were prepared using this new approach. Water swelling characteristics of fatty acid, acrylic acid copolymer and tercopolymer respectively in acid and alkali solutions have been studied by a step-change method. The antibiotic drug cephalosporin and paracetamol have also been incorporated into the polymer blend through dissolution with the release of the antibiotic drug being evaluated in bacterial stain media and buffer solution. Our results show that the rate of release of paracetamol getss affected by the pH factor and also by the nature of polymer blend. Our experimental data have later been statistically analyzed to quantify the precise nature of polymer decay rates on the pH density of the relevant polymer solvents. The time evolution of the polymer decay rates indicate a marked transition from a linear to a strictly non-linear regime depending on the whether the chosen sample is a general copolymer (linear) or a tercopolymer (non-linear). Non-linear data extrapolation techniques have been used to make probabilistic predictions about the variation in weight percentages of retained polymers at all future times, thereby quantifying the degree of efficacy of the new method of drug delivery.