5 resultados para Starting materials
em Aston University Research Archive
Resumo:
Synthetic routes to polymers possessing functional groups were studied. Direct functionalisation of poly(vinyltoluene) by lithiation and carboxylation resulted in the expected carboxylic acid but reaction was complicated by the production of a mixture of products. Reaction occurred both at the polymer backbone and at the pendant methyl group. Reaction with ethyl formate was also difficult to control and a secondary alcohol was formed even when an excess of the carbonyl compounds was employed. Grignard formation of poly(bromostyrene) was successful but once formed, the derivative rearranged resulting in chain scission and degradation of the polymer. Therefore subsequent reactions of the Grignard reagent with carbonyl groups were unsuccessful in producing functionalised polymers. Reactions of vinyltoluene monomer were more successful. Although complications arose when lithiation and carboxylation of the monomer were carried out using lithium diisopropylamide because the carboxylic acid product reacted with the excess lithium diisopropylamide present, metallation by potassium t-butoxide followed by reaction with 2-(3-chloropropyl)-2-methyl-1,3-dioxalane resulted in the formation of 2-methyl-2(4-(vinylphenyl)-butyl-1,3,-dioxalane. The butyllithium initiated anionic polymerisation of this protected monomer resulted in a polymer which had a very narrow molecular weight distribution (Mw/Mn= 1.05) and subsequent hydrolysis of the polymer resulted in poly(6(vinylphenyl)-hexan-2-one) which was derivatised with 2,4 dinitrophenyl-hydrazine. Functionalisation by modification of the siloxane derivative 3-(methylpropenoxycarbonyl)ltrimethoxysilane was unsuccessful. The acid catalysed exchange reactions of this monomer with alcohols such as eugenol, octan-1-ol, pentan-1-ol, and hexan-1-ol were inefficient, resulting in a mixture of products and unreacted starting materials.
Resumo:
The aims of this project were:1) the synthesis of a range of new polyether-based vinylic monomers and their incorporation into poly(2-hydroxyethyl methacrylate) (poly(HEMA)) based hydrogel networks, of interest to the contact lens industry.2) the synthesis of a range of alkyltartronic acids, and their derivatives. These molecules may ultimately be used to produce functionalised poly(-hydroxy acids) of potential interest in either drug delivery or surgical suture applications. The novel syntheses of a range of both methoxy poly(ethylene glycol) acrylates (MPEGAs) and poly(ethylene glycol) acrylates (PEGAs) are described. Products were obtained in very good yields. These new polyether-based vinylic monomers were copolymerised with 2-hydroxyethyl methacrylate (HEMA) to produce a range of hydrogels. The equilibrium water contents (EWC) and surface properties of these copolymers containing linear polyethers were examined. It was found that the EWC was enhanced by the presence of the hydrophilic polyether chains.Results suggest that the polyether side chains express themselves at the polymer surface, thus dictating the surface properties of the gels. Consequentially, this leads to an advantageous reduction in the surface adhesion of biological species. A synthesis of a range of alkyltartronic acids is also described. The acids prepared were obtained in very good yields using a novel four-stage synthesis. These acids were modified to give potassium monoethyl alkyltartronates. Although no polyesterification is described in this thesis, these modified alkyltartronic acid derivatives are considered to be potentially excellent starting materials for poly (alkyltartronic acid) synthesis via anhydrocarboxylate or anhydrosulphite cyclic monomers.
Resumo:
This research project is concerned with the design, synthesis and development of new phosphodiesterase 5 (PDE5) inhibitors with improved selectivities and lower toxicities. Two series of a 5 member and a 6 member ring fused heterocyclic compounds were designed, and synthesized. By alteration of starting materials and fragments, two virtual libraries, each is consisted of close to hundred compounds, were obtained successfully. The screening of sexual stimulation activity with rabbits demonstrated both groups of compounds were able to stimulate rabbit penile erection significantly. The following toxicity studies revealed 2-(substituted-sulfonylphenyl)-imidazo [1,5-a]-1,3,5-triazine-4-(3H)-one group possessed an unacceptable toxicity with oral LD50 about 200mg/kg; while 2-(substituted-sulfonylphenyl)-pyrrolo[2,3-d]pyrimidin-4-one group showed an acceptable toxicity with oral LD50 over 2000mg/kg. The continued bioactivity studies showed yonkenafil, the representative of 2-(substituted-sulfonylphenyl)-pyrrolo[2,3-d]pyrimidin-4-one group, has a better selectivity towards PDE5 and PDE6 than sildenafil and a better overall profile of sexual stimulation on animals than sildenafil. Chronic toxicity studies of yonkenafil further confirmed yonkenafil did not cause any serious side effect and damage on animal models and most actions were explainable. Based on evidences of the above studies, yonkenafil were recommended to enter clinical trials by the regulation authority of China, SFDA. Currently yonkenafil has been through the Phase I clinical trials and ready to progress into Phase II. Hopefully, yonkenafil will provide an alternative to the ED patients in the future.
Resumo:
We have shown previously that a sequence-specific DNA-binding protein based on the Lac repressor protein can isolate pre-purified DNA efficiently from simple buffer solution but our attempts to purify plasmids directly from crude starting materials were disappointing with unpractically low DNA yields. We have optimized tbe procedure and present a simple affinity methodology whereby plasmid DNA is purified directly by mixing two crude cell lysates, one cell lysate containing the plasmid and the other the protein affinity ligand, without the need for treatment by RNaseA. After IMAC chromatography, high purity supercoiled DNA is recovered in good yields of 100-150 μg plasmid per 200 mL shake flask culture. Moreover, the resulting DNA is free from linear or open-circular plasmid DNA, genomic DNA, RNA, and protein, to the limits of our detection. Furthermore, we show that lyophilized affinity ligand can be stored at room temperature and re-hydrated for use when required. © 2007 Wiley Periodicals, Inc.
Resumo:
Chemoselectivity is a cornerstone of catalysis, permitting the targeted modification of specific functional groups within complex starting materials. Here we elucidate key structural and electronic factors controlling the liquid phase hydrogenation of cinnamaldehyde and related benzylic aldehydes over Pt nanoparticles. Mechanistic insight from kinetic mapping reveals cinnamaldehyde hydrogenation is structure-insensitive over metallic platinum, proceeding with a common Turnover Frequency independent of precursor, particle size or support architecture. In contrast, selectivity to the desired cinnamyl alcohol product is highly structure sensitive, with large nanoparticles and high hydrogen pressures favoring C=O over C=C hydrogenation, attributed to molecular surface crowding and suppression of sterically-demanding adsorption modes. In situ vibrational spectroscopies highlight the role of support polarity in enhancing C=O hydrogenation (through cinnamaldehyde reorientation), a general phenomenon extending to alkyl-substituted benzaldehydes. Tuning nanoparticle size and support polarity affords a flexible means to control the chemoselective hydrogenation of aromatic aldehydes.