33 resultados para Stand-Alone and Grid Connected PV applications

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

System efficiency and cost effectiveness are of critical importance for photovoltaic (PV) systems. This paper addresses the two issues by developing a novel three-port dc-dc converter for stand-alone PV systems, based on an improved Flyback-Forward topology. It provides a compact single-unit solution with a combined feature of optimized maximum power point tracking (MPPT), high step-up ratio, galvanic isolation, and multiple operating modes for domestic and aerospace applications. A theoretical analysis is conducted to analyze the operating modes followed by simulation and experimental work. This paper is focused on a comprehensive modulation strategy utilizing both PWM and phase-shifted control that satisfies the requirement of PV power systems to achieve MPPT and output voltage regulation. A 250-W converter was designed and prototyped to provide experimental verification in term of system integration and high conversion efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many areas of northern India, salinity renders groundwater unsuitable for drinking and even for irrigation. Though membrane treatment can be used to remove the salt, there are some drawbacks to this approach e.g. (1) depletion of the groundwater due to over-abstraction, (2) saline contamination of surface water and soil caused by concentrate disposal and (3) high electricity usage. To address these issues, a system is proposed in which a photovoltaic-powered reverse osmosis (RO) system is used to irrigate a greenhouse (GH) in a stand-alone arrangement. The concentrate from the RO is supplied to an evaporative cooling system, thus reducing the volume of the concentrate so that finally it can be evaporated in a pond to solid for safe disposal. Based on typical meteorological data for Delhi, calculations based on mass and energy balance are presented to assess the sizing and cost of the system. It is shown that solar radiation, freshwater output and evapotranspiration demand are readily matched due to the approximately linear relation among these variables. The demand for concentrate varies independently, however, thus favouring the use of a variable recovery arrangement. Though enough water may be harvested from the GH roof to provide year-round irrigation, this would require considerable storage. Some practical options for storage tanks are discussed. An alternative use of rainwater is in misting to reduce peak temperatures in the summer. An example optimised design provides internal temperatures below 30EC (monthly average daily maxima) for 8 months of the year and costs about €36,000 for the whole system with GH floor area of 1000 m2 . Further work is needed to assess technical risks relating to scale-deposition in the membrane and evaporative pads, and to develop a business model that will allow such a project to succeed in the Indian rural context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose -The main aim of this paper is to examine the underlying drivers for the development and subsequent discontinuation of stand-alone corporate social responsibility (CSR) reporting in a multinational subsidiary in Bangladesh. Design/Methodology/Approach - The research approach employed for this purpose is a case study using evidence from a series of in depth interviews conducted during the period 2002-2010. Interview data is supplemented by examining other sources of information including annual reports, stand-alone social reports and relevant newspaper articles during the study period. Findings - It appears that the stand-alone CSR reporting process was initiated to give the subsidiary a formal space in which to legitimise its activities in Bangladesh where both tobacco control regulation and a strong anti-tobacco movement were gaining momentum. At the start of the process in 2002 corporate interviewees were very receptive of this initiative and strongly believed that it would not be a one off exercise. However, in the face of subsequent significant national policy shifts concerning tobacco control, irreconcilable stakeholder demands and increasing criticism of the CSR activities of the organisation at home and abroad the process was brought to an abrupt end in 2009. Research Limitations/Implications - The paper has a number of implications for policy makers concerning the future prospects for stand-alone social/sustainability reporting as a means of enhancing organisational transparency and accountability. In addition the paper discusses a number of theoretical implications for the development of legitimacy theory. Originality/value - Using the lens of legitimacy the paper theorises the circumstances leading to the initiation and subsequent cessation of CSR reporting in the organisation concerned. As far as we know this is the first study which theorises and provides significant fieldwork based empirical evidence regarding the discontinuation of stand-alone social reporting by a multinational company operating in a developing country. Thus, it extends previous desk-based attempts at using legitimacy theory to explain a decrease (or discontinuity) in CSR disclosures by de Villiers and van Staden (2006) and Tilling and Tilt (2010).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-volume capacitance is required to buffer the power difference between the input and output ports in single-phase grid-connected photovoltaic inverters, which become an obstacle to high system efficiency and long device lifetime. Furthermore, total harmonic distortion becomes serious when the system runs into low power level. In this study, a comprehensive analysis is introduced for two-stage topology with the consideration of active power, DC-link (DCL) voltage, ripple and capacitance. This study proposed a comprehensive DCL voltage control strategy to minimise the DCL capacitance while maintaining a normal system operation. Furthermore, the proposed control strategy is flexible to be integrated with the pulse-skipping control that significantly improves the power quality at light power conditions. Since the proposed control strategy needs to vary DCL voltage, an active protection scheme is also introduced to prevent any voltage violation across the DCL. The proposed control strategy is evaluated by both simulation and experiments, whose results confirm the system effectiveness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is part of a project which aims to research the opportunities for the re-use of batteries after their primary use in low and ultra low carbon vehicles on the electricity grid system. One potential revenue stream is to provide primary/secondary/high frequency response to National Grid through market mechanisms via DNO's or Energy service providers. Some commercial battery energy storage systems (BESS) already exist on the grid system, but these tend to use costly new or high performance batteries. Second life batteries should be available at lower cost than new batteries but reliability becomes an important issue as individual batteries may suffer from degraded performance or failure. Therefore converter topology design could be used to influence the overall system reliability. A detailed reliability calculation of different single phase battery-to-grid converter interfacing schemes is presented. A suitable converter topology for robust and reliable BESS is recommended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a new mathematical model for efficiency analysis, which combines DEA methodology with an old idea-Ratio Analysis. Our model, called DEA-R, treats all possible ratios "output/input" as outputs within the standard DEA model. Although DEA and DEA-R generate different summary measures for efficiency, the two measures are comparable. Our mathematical and empirical comparisons establish the validity of DEA-R model in its own right. The key advantage of DEA-R over DEA is that it allows effective integration of the model with experts' opinions via flexible restrictive conditions on individual "output/input" pairs. © 2007 Springer Science+Business Media, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of sensing devices is one of the instrumentation fields that has grown rapidly in the last decade. Corresponding to the swift advance in the development of microelectronic sensors, optical fibre sensors are widely investigated because of their advantageous properties over the electronics sensors such as their wavelength multiplexing capability and high sensitivity to temperature, pressure, strain, vibration and acoustic emission. Moreover, optical fibre sensors are more attractive than the electronics sensors as they can perform distributed sensing, in terms of covering a reasonably large area using a single piece of fibre. Apart from being a responsive element in the sensing field, optical fibre possesses good assets in generating, distributing, processing and transmitting signals in the future broadband information network. These assets include wide bandwidth, high capacity and low loss that grant mobility and flexibility for wireless access systems. Among these core technologies, the fibre optic signal processing and transmission of optical and radio frequency signals have been the subjects of study in this thesis. Based on the intrinsic properties of single-mode optical fibre, this thesis aims to exploit the fibre characteristics such as thermal sensitivity, birefringence, dispersion and nonlinearity, in the applications of temperature sensing and radio-over-fibre systems. By exploiting the fibre thermal sensitivity, a fully distributed temperature sensing system consisting of an apodised chirped fibre Bragg grating has been implemented. The proposed system has proven to be efficient in characterising grating and providing the information of temperature variation, location and width of the heat source applied in the area under test.To exploit the fibre birefringence, a fibre delay line filter using a single high-birefringence optical fibre structure has been presented. The proposed filter can be reconfigured and programmed by adjusting the input azimuth of launched light, as well as the strength and direction of the applied coupling, to meet the requirements of signal processing for different purposes in microwave photonic and optical filtering applications. To exploit the fibre dispersion and nonlinearity, experimental investigations have been carried out to study their joint effect in high power double-sideband and single-sideband modulated links with the presence of fibre loss. The experimental results have been theoretically verified based on the in-house implementation of the split-step Fourier method applied to the generalised nonlinear Schrödinger equation. Further simulation study on the inter-modulation distortion in two-tone signal transmission has also been presented so as to show the effect of nonlinearity of one channel on the other. In addition to the experimental work, numerical simulations have also been carried out in all the proposed systems, to ensure that all the aspects concerned are comprehensively investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives Effective skin antisepsis and disinfection of medical devices are key factors in preventing many healthcare-acquired infections associated with skin microorganisms, particularly Staphylococcus epidermidis. The aim of this study was to investigate the antimicrobial efficacy of chlorhexidine digluconate (CHG), a widely used antiseptic in clinical practice, alone and in combination with tea tree oil (TTO), eucalyptus oil (EO) and thymol against planktonic and biofilm cultures of S. epidermidis. Methods Antimicrobial susceptibility assays against S. epidermidis in a suspension and in a biofilm mode of growth were performed with broth microdilution and ATP bioluminescence methods, respectively. Synergy of antimicrobial agents was evaluated with the chequerboard method. Results CHG exhibited antimicrobial activity against S. epidermidis in both suspension and biofilm (MIC 2–8 mg/L). Of the essential oils thymol exhibited the greatest antimicrobial efficacy (0.5–4 g/L) against S. epidermidis in suspension and biofilm followed by TTO (2–16 g/L) and EO (4–64 g/L). MICs of CHG and EO were reduced against S. epidermidis biofilm when in combination (MIC of 8 reduced to 0.25–1 mg/L and MIC of 32–64 reduced to 4 g/L for CHG and EO, respectively). Furthermore, the combination of EO with CHG demonstrated synergistic activity against S. epidermidis biofilm with a fractional inhibitory concentration index of <0.5. Conclusions The results from this study suggest that there may be a role for essential oils, in particular EO, for improved skin antisepsis when combined with CHG.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four novel oxapenem compounds (i.e., AM-112, AM-113, AM-114, and AM-115) were investigated for their β-lactamase inhibitory activity against a panel of isolated class A, C, and D enzymes, which included expanded-spectrum β-lactamase enzymes (ESBLs). The oxapenems were potent β-lactamase inhibitors. Activity varied within the group, with AM-113 and AM-114 proving to be the most active compounds. The 50% inhibitory concentrations for these agents were up to 100,000-fold lower than that of clavulanic acid against class C and D enzymes. As a group, the oxapenems were more potent than clavulanic acid against enzymes from all classes. The ability of these compounds to protect ceftazidime from hydrolysis by β-lactamase-producing strains was evaluated by MIC tests that combined ceftazidime and each oxapenem in a 1:1 or 2:1 ratio. The oxapenems markedly reduced the MICs for ceftazidime against class C hyperproducing strains and strains producing TEM- and SHV-derived ESBLs. There was little difference between the activity of 1:1 and 2:1 combinations of ceftazidime and oxapenem. The oxapenems failed to enhance the activity of ceftazidime against derepressed AmpC-producing Pseudomonas aeruginosa strains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A multiplexer/demultiplexer for 100 GHz channel spacing based on chirped fibre Bragg gratings with different bandwidths and optical circulators is presented. The spectral characteristics, specifications and operation of these passive devices are described, showing its potential use in dense wavelength division multiplexing (DWDM) applications. © 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of a 112Gbit/s dual-carrier DP-16-QAM channel in various WDM configurations is characterized. Variations of the dispersion map, ROADM count and system length are experimentally evaluated and compared with numerical simulation. © 2012 OSA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A multiplexer/demultiplexer for 100 GHz channel spacing based on chirped fibre Bragg gratings with different bandwidths and optical circulators is presented. The spectral characteristics, specifications and operation of these passive devices are described, showing its potential use in DWDM applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modern grid system or the smart grid is likely to be populated with multiple distributed energy sources, e.g. wind power, PV power, Plug-in Electric Vehicle (PEV). It will also include a variety of linear and nonlinear loads. The intermittent nature of renewable energies like PV, wind turbine and increased penetration of Electric Vehicle (EV) makes the stable operation of utility grid system challenging. In order to ensure a stable operation of the utility grid system and to support smart grid functionalities such as, fault ride-through, frequency response, reactive power support, and mitigation of power quality issues, an energy storage system (ESS) could play an important role. A fast acting bidirectional energy storage system which can rapidly provide and absorb power and/or VARs for a sufficient time is a potentially valuable tool to support this functionality. Battery energy storage systems (BESS) are one of a range suitable energy storage system because it can provide and absorb power for sufficient time as well as able to respond reasonably fast. Conventional BESS already exist on the grid system are made up primarily of new batteries. The cost of these batteries can be high which makes most BESS an expensive solution. In order to assist moving towards a low carbon economy and to reduce battery cost this work aims to research the opportunities for the re-use of batteries after their primary use in low and ultra-low carbon vehicles (EV/HEV) on the electricity grid system. This research aims to develop a new generation of second life battery energy storage systems (SLBESS) which could interface to the low/medium voltage network to provide necessary grid support in a reliable and in cost-effective manner. The reliability/performance of these batteries is not clear, but is almost certainly worse than a new battery. Manufacturers indicate that a mixture of gradual degradation and sudden failure are both possible and failure mechanisms are likely to be related to how hard the batteries were driven inside the vehicle. There are several figures from a number of sources including the DECC (Department of Energy and Climate Control) and Arup and Cenex reports indicate anything from 70,000 to 2.6 million electric and hybrid vehicles on the road by 2020. Once the vehicle battery has degraded to around 70-80% of its capacity it is considered to be at the end of its first life application. This leaves capacity available for a second life at a much cheaper cost than a new BESS Assuming a battery capability of around 5-18kWhr (MHEV 5kWh - BEV 18kWh battery) and approximate 10 year life span, this equates to a projection of battery storage capability available for second life of >1GWhrs by 2025. Moreover, each vehicle manufacturer has different specifications for battery chemistry, number and arrangement of battery cells, capacity, voltage, size etc. To enable research and investment in this area and to maximize the remaining life of these batteries, one of the design challenges is to combine these hybrid batteries into a grid-tie converter where their different performance characteristics, and parameter variation can be catered for and a hot swapping mechanism is available so that as a battery ends it second life, it can be replaced without affecting the overall system operation. This integration of either single types of batteries with vastly different performance capability or a hybrid battery system to a grid-tie 3 energy storage system is different to currently existing work on battery energy storage systems (BESS) which deals with a single type of battery with common characteristics. This thesis addresses and solves the power electronic design challenges in integrating second life hybrid batteries into a grid-tie energy storage unit for the first time. This study details a suitable multi-modular power electronic converter and its various switching strategies which can integrate widely different batteries to a grid-tie inverter irrespective of their characteristics, voltage levels and reliability. The proposed converter provides a high efficiency, enhanced control flexibility and has the capability to operate in different operational modes from the input to output. Designing an appropriate control system for this kind of hybrid battery storage system is also important because of the variation of battery types, differences in characteristics and different levels of degradations. This thesis proposes a generalised distributed power sharing strategy based on weighting function aims to optimally use a set of hybrid batteries according to their relative characteristics while providing the necessary grid support by distributing the power between the batteries. The strategy is adaptive in nature and varies as the individual battery characteristics change in real time as a result of degradation for example. A suitable bidirectional distributed control strategy or a module independent control technique has been developed corresponding to each mode of operation of the proposed modular converter. Stability is an important consideration in control of all power converters and as such this thesis investigates the control stability of the multi-modular converter in detailed. Many controllers use PI/PID based techniques with fixed control parameters. However, this is not found to be suitable from a stability point-of-view. Issues of control stability using this controller type under one of the operating modes has led to the development of an alternative adaptive and nonlinear Lyapunov based control for the modular power converter. Finally, a detailed simulation and experimental validation of the proposed power converter operation, power sharing strategy, proposed control structures and control stability issue have been undertaken using a grid connected laboratory based multi-modular hybrid battery energy storage system prototype. The experimental validation has demonstrated the feasibility of this new energy storage system operation for use in future grid applications.