11 resultados para Stackelberg equilibrium
em Aston University Research Archive
Resumo:
A periodic density functional theory method using the B3LYP hybrid exchange-correlation potential is applied to the Prussian blue analogue RbMn[Fe(CN)6] to evaluate the suitability of the method for studying, and predicting, the photomagnetic behavior of Prussian blue analogues and related materials. The method allows correct description of the equilibrium structures of the different electronic configurations with regard to the cell parameters and bond distances. In agreement with the experimental data, the calculations have shown that the low-temperature phase (LT; Fe(2+)(t(6)2g, S = 0)-CN-Mn(3+)(t(3)2g e(1)g, S = 2)) is the stable phase at low temperature instead of the high-temperature phase (HT; Fe(3+)(t(5)2g, S = 1/2)-CN-Mn(2+)(t(3)2g e(2)g, S = 5/2)). Additionally, the method gives an estimation for the enthalpy difference (HT LT) with a value of 143 J mol(-1) K(-1). The comparison of our calculations with experimental data from the literature and from our calorimetric and X-ray photoelectron spectroscopy measurements on the Rb0.97Mn[Fe(CN)6]0.98 x 1.03 H2O compound is analyzed, and in general, a satisfactory agreement is obtained. The method also predicts the metastable nature of the electronic configuration of the high-temperature phase, a necessary condition to photoinduce that phase at low temperatures. It gives a photoactivation energy of 2.36 eV, which is in agreement with photoinduced demagnetization produced by a green laser.
Resumo:
Methods for understanding classical disordered spin systems with interactions conforming to some idealized graphical structure are well developed. The equilibrium properties of the Sherrington-Kirkpatrick model, which has a densely connected structure, have become well understood. Many features generalize to sparse Erdös- Rényi graph structures above the percolation threshold and to Bethe lattices when appropriate boundary conditions apply. In this paper, we consider spin states subject to a combination of sparse strong interactions with weak dense interactions, which we term a composite model. The equilibrium properties are examined through the replica method, with exact analysis of the high-temperature paramagnetic, spin-glass, and ferromagnetic phases by perturbative schemes. We present results of replica symmetric variational approximations, where perturbative approaches fail at lower temperature. Results demonstrate re-entrant behaviors from spin glass to ferromagnetic phases as temperature is lowered, including transitions from replica symmetry broken to replica symmetric phases. The nature of high-temperature transitions is found to be sensitive to the connectivity profile in the sparse subgraph, with regular connectivity a discontinuous transition from the paramagnetic to ferromagnetic phases is apparent.
Resumo:
A study of vapour-liquid equilibria is presented together with current developments. The theory of vapour-liquid equilibria is discussed. Both experimental and prediction methods for obtaining vapour-liquid equilibria data are critically reviewed. The development of a new family of equilibrium stills to measure experimental VLE data from sub-atmosphere to 35 bar pressure is described. Existing experimental techniques are reviewed, to highlight the needs for these new apparati and their major attributes. Details are provided of how apparatus may be further improved and how computer control may be implemented. To provide a rigorous test of the apparatus the stills have been commissioned using acetic acid-water mixture at one atmosphere pressure. A Barker-type consistency test computer program, which allows for association in both phases has been applied to the data generated and clearly shows that the stills produce data of a very high quality. Two high quality data sets, for the mixture acetone-chloroform, have been generated at one atmosphere and 64.3oC. These data are used to investigate the ability of the new novel technique, based on molecular parameters, to predict VLE data for highly polar mixtures. Eight, vapour-liquid equilibrium data sets have been produced for the cyclohexane-ethanol mixture at one atmosphere, 2, 4, 6, 8 and 11 bar, 90.9oC and 132.8oC. These data sets have been tested for thermodynamic consistency using a Barker-type fitting package and shown to be of high quality. The data have been used to investigate the dependence of UNIQUAC parameters with temperature. The data have in addition been used to compare directly the performance of the predictive methods - Original UNIFAC, a modified version of UNIFAC, and the new novel technique, based on molecular parameters developed from generalised London's potential (GLP) theory.
Resumo:
A total pressure apparatus has been developed to measure vapour-liquid equilibrium data on binary mixtures at atmospheric and sub-atmospheric pressures. The method gives isothermal data which can be obtained rapidly. Only measurements of total pressure are made as a direct function of composition of synthetic liquid phase composition, the vapour phase composition being deduced through the Gibbs-Duhem relationship. The need to analyse either of the phases is eliminated. As such the errors introduced by sampling and analysis are removed. The essential requirements are that the pure components be degassed completely since any deficiency in degassing would introduce errors into the measured pressures. A similarly essential requirement was that the central apparatus would have to be absolutely leak-tight as any leakage of air either in or out of the apparatus would introduce erroneous pressure readings. The apparatus was commissioned by measuring the saturated vapour pressures of both degassed water and ethanol as a function of temperature. The pressure-temperature data on degassed water measured were directly compared with data in the literature, with good agreement. Similarly the pressure-temperature data were measured for ethanol, methanol and cyclohexane and where possible a direct comparison made with the literature data. Good agreement between the pure component data of this work and those available in the literature demonstrates firstly that a satisfactory degassing procedure has been achieved and that secondly the measurements of pressure-temperature are consistent for any one component; since this is true for a number of components, the measurements of both temperature and pressure are both self-consistent and of sufficient accuracy, with an observed compatibility between the precision/accuracy of the separate means of measuring pressure and temperature. The liquid mixtures studied were of ethanol-water, methanol-water and ethanol-cyclohexane. The total pressure was measured as the composition inside the equilibrium cell was varied at a set temperature. This gave P-T-x data sets for each mixture at a range of temperatures. A standard fitting-package from the literature was used to reduce the raw data to yield y-values to complete the x-y-P-T data sets. A consistency test could not be applied to the P-T-x data set as no y-values were obtained during the experimental measurements. In general satisfactory agreement was found between the data of this work and those available in the literature. For some runs discrepancies were observed, and further work recommended to eliminate the problems identified.
Resumo:
The further development of the use of NMR relaxation times in chemical, biological and medical research has perhaps been curtailed by the length of time these measurements often take. The DESPOT (Driven Equilibrium Single Pulse Observation of T1) method has been developed, which reduces the time required to make a T1 measurement by a factor of up to 100. The technique has been studied extensively herein and the thesis contains recommendations for its successful experimental application. Modified DESPOT type equations for use when T2 relaxation is incomplete or where off-resonance effects are thought to be significant are also presented. A recently reported application of the DESPOT technique to MR imaging gave good initial results but suffered from the fact that the images were derived from spin systems that were not driven to equilibrium. An approach which allows equilibrium to be obtained with only one non-acquisition sequence is presented herein and should prove invaluable in variable contrast imaging. A DESPOT type approach has also been successfully applied to the measurement of T1. T_1's can be measured, using this approach significantly faster than by the use of the classical method. The new method also provides a value for T1 simultaneously and therefore the technique should prove valuable in intermediate energy barrier chemical exchange studies. The method also gives rise to the possibility of obtaining simultaneous T1 and T1 MR images. The DESPOT technique depends on rapid multipulsing at nutation angles, normally less than 90^o. Work in this area has highlighted the possible time saving for spectral acquisition over the classical technique (90^o-5T_1)_n. A new method based on these principles has been developed which permits the rapid multipulsing of samples to give T_1 and M_0 ratio information. The time needed, however, is only slightly longer than would be required to determine the M_0 ratio alone using the classical technique. In ^1H decoupled ^13C spectroscopy the method also gives nOe ratio information for the individual absorptions in the spectrum.
Resumo:
The theory of vapour-liquid equilibria is reviewed, as is the present status or prediction methods in this field. After discussion of the experimental methods available, development of a recirculating equilibrium still based on a previously successful design (the modified Raal, Code and Best still of O'Donnell and Jenkins) is described. This novel still is designed to work at pressures up to 35 bar and for the measurement of both isothermal and isobaric vapour-liquid equilibrium data. The equilibrium still was first commissioned by measuring the saturated vapour pressures of pure ethanol and cyclohexane in the temperature range 77-124°C and 80-142°C respectively. The data obtained were compared with available literature experimental values and with values derived from an extended form of the Antoine equation for which parameters were given in the literature. Commissioning continued with the study of the phase behaviour of mixtures of the two pure components as such mixtures are strongly non-ideal, showing azeotopic behaviour. Existing data did not exist above one atmosphere pressure. Isothermal measurements were made at 83.29°C and 106.54°C, whilst isobaric measurements were made at pressures of 1 bar, 3 bar and 5 bar respectively. The experimental vapour-liquid equilibrium data obtained are assessed by a standard literature method incorporating a themodynamic consistency test that minimises the errors in all the measured variables. This assessment showed that reasonable x-P-T data-sets had been measured, from which y-values could be deduced, but that the experimental y-values indicated the need for improvements in the design of the still. The final discussion sets out the improvements required and outlines how they might be attained.
Resumo:
We study memory effects in a kinetic roughening model. For d=1, a different dynamic scaling is uncovered in the memory dominated phases; the Kardar-Parisi-Zhang scaling is restored in the absence of noise. dc=2 represents the critical dimension where memory is shown to smoothen the roughening front (a=0). Studies on a discrete atomistic model in the same universality class reconfirm the analytical results in the large time limit, while a different scaling behavior shows up for t
Resumo:
A discussion of how to promote employability within the curriculum
Resumo:
We study waveguide fabrication in lithium-niobo-phosphate glass, aiming at a practical method of single-stage fabrication of nonlinear integrated-optics devices. We observed chemical transformations or material redistribution during the course of high repetition rate femtosecond laser inscription. We believe that the laser-induced ultrafast heating and cooling followed by elements diffusion on a microscopic scale opens the way toward the engineering non-equilibrium sates of matter and thus can further enhance Refractive Index (RI) contrasts by virtue of changing glass composition in and around the fs tracks. © 2014 Optical Society of America.
Resumo:
We study the dynamics of a growing crystalline facet where the growth mechanism is controlled by the geometry of the local curvature. A continuum model, in (2+1) dimensions, is developed in analogy with the Kardar-Parisi-Zhang (KPZ) model is considered for the purpose. Following standard coarse graining procedures, it is shown that in the large time, long distance limit, the continuum model predicts a curvature independent KPZ phase, thereby suppressing all explicit effects of curvature and local pinning in the system, in the "perturbative" limit. A direct numerical integration of this growth equation, in 1+1 dimensions, supports this observation below a critical parametric range, above which generic instabilities, in the form of isolated pillared structures lead to deviations from standard scaling behaviour. Possibilities of controlling this instability by introducing statistically "irrelevant" (in the sense of renormalisation groups) higher ordered nonlinearities have also been discussed.