28 resultados para Stability results
em Aston University Research Archive
Resumo:
Potential applications of high-damping and high-stiffness composites have motivated extensive research on the effects of negative-stiffness inclusions on the overall properties of composites. Recent theoretical advances have been based on the Hashin-Shtrikman composite models, one-dimensional discrete viscoelastic systems and a two-dimensional nested triangular viscoelastic network. In this paper, we further analyze the two-dimensional triangular structure containing pre-selected negative-stiffness components to study its underlying deformation mechanisms and stability. Major new findings are structure-deformation evolution with respect to the magnitude of negative stiffness under shear loading and the phenomena related to dissipation-induced destabilization and inertia-induced stabilization, according to Lyapunov stability analysis. The evolution shows strong correlations between stiffness anomalies and deformation modes. Our stability results reveal that stable damping peaks, i.e. stably extreme effective damping properties, are achievable under hydrostatic loading when the inertia is greater than a critical value. Moreover, destabilization induced by elemental damping is observed with the critical inertia. Regardless of elemental damping, when the inertia is less than the critical value, a weaker system instability is identified.
Resumo:
An international round robin study of the stability of fast pyrolysis bio-oil was undertaken. Fifteen laboratories in five different countries contributed. Two bio-oil samples were distributed to the laboratories for stability testing and further analysis. The stability test was defined in a method provided with the bio-oil samples. Viscosity measurement was a key input. The change in viscosity of a sealed sample of bio-oil held for 24 h at 80 °C was the defining element of stability. Subsequent analyses included ultimate analysis, density, moisture, ash, filterable solids, and TAN/pH determination, and gel permeation chromatography. The results showed that kinematic viscosity measurement was more generally conducted and more reproducibly performed versus dynamic viscosity measurement. The variation in the results of the stability test was great and a number of reasons for the variation were identified. The subsequent analyses proved to be at the level of reproducibility, as found in earlier round robins on bio-oil analysis. Clearly, the analyses were more straightforward and reproducible with a bio-oil sample low in filterable solids (0.2%), compared to one with a higher (2%) solids loading. These results can be helpful in setting standards for use of bio-oil, which is just coming into the marketplace. © 2012 American Chemical Society.
Resumo:
Developmental stability is the degree to which we can withstand environmental or genetic stressors during development. Fluctuating asymmetry (FA), concerns the extent to which the right and left side of the body is asymmetrical and is one way to measure developmental stability. Two studies were carried out that examined both the predictive value of leader FA with leadership behaviors and its role in facilitating group performance. The first study examined the hypothesis that a leader's FA is correlated with scores on the Multifactor Leadership Questionnaire (MLQ). The results revealed individuals with a more asymmetrical morphology scored higher on the transformational, but not transactional, dimensions of leadership behavior. A second study examined the hypothesis that asymmetrical morphology and leadership effectiveness would share a positive relationship. In this study participants who led a business game exercise, revealed a positive relationship between FA and self-reported well-being and task satisfaction. Importantly, there was also a positive correlation between the leader's FA score and group performance. The role that developmental stability may play in leadership effectiveness is discussed in the wider context of evolutionary psychology.
Resumo:
Trehalose is a well known protector of biostructures like liposomes and proteins during freeze-drying, but still today there is a big debate regarding its mechanism of action. In previous experiments we have shown that trehalose is able to protect a non-phospholipid-based liposomal adjuvant (designated CAF01) composed of the cationic dimethyldioctadecylammonium (DDA) and trehalose 6,6-dibehenate (TDB) during freeze-drying [D. Christensen, C. Foged, I. Rosenkrands, H.M. Nielsen, P. Andersen, E.M. Agger, Trehalose preserves DDA/TDB liposomes and their adjuvant effect during freeze-drying, Biochim. Biophys. Acta, Biomembr. 1768 (2007) 2120-2129]. Furthermore it was seen that TDB is required for the stabilizing effect of trehalose. Herein, we show using the Langmuir-Blodgett technique that a high concentration of TDB present at the water-lipid interface results in a surface pressure around 67 mN/m as compared to that of pure DDA which is approximately 47 mN/m in the compressed state. This indicates that the attractive forces between the trehalose head group of TDB and water are greater than those between the quaternary ammonium head group of DDA and water. Furthermore, addition of trehalose to a DDA monolayer containing small amounts of TDB also increases the surface pressure, which is not observed in the absence of TDB. This suggests that even small amounts of trehalose groups on TDB present at the water-lipid interface associate free trehalose to the liposome surface, presumably by hydrogen bonding between the trehalose head groups of TDB and the free trehalose molecules. Hence, for CAF01 the TDB component not only stabilizes the cationic liposomes and enhances the immune response but also facilitates the cryo-/lyoprotection by trehalose through direct interaction with the head group of TDB. Furthermore the results indicate that direct interaction with liposome surfaces is necessary for trehalose to enable protection during freeze-drying.
Resumo:
Results of full numerical simulations of a guiding-centre soliton system with randomly birefringent SMF fibre are shown and analysed. It emerges that the soliton system becomes unstable even for small amounts of PMD.
Resumo:
DDevelopmental dyslexia is a reading disorder associated with impaired postural control. However, such deficits are also found in attention deficit hyperactivity disorder (ADHD), which is present in a substantial subset of dyslexia diagnoses. Very few studies of balance in dyslexia have assessed ADHD symptoms, thereby motivating the hypothesis that such measures can account for the group differences observed. In this study, we assessed adults with dyslexia and similarly aged controls on a battery of cognitive, literacy and attention measures, alongside tasks of postural stability. Displacements of centre of mass to perturbations of posture were measured in four experimental conditions using digital optical motion capture. The largest group differences were obtained in conditions where cues to the support surface were reduced. Between-group differences in postural sway and in sway variability were largely accounted for by co-varying hyperactivity and inattention ratings, however. These results therefore suggest that postural instability in dyslexia is more strongly associated with symptoms of ADHD than to those specific to reading impairment.
Resumo:
A major goal in vaccine development is elimination of the 'cold chain', the transport and storage system for maintenance and distribution of the vaccine product. This is particularly pertinent to liquid formulation of vaccines. We have previously described the rod-insert vaginal ring (RiR) device, comprising an elastomeric body into which are inserted lyophilised, rod-shaped, solid drug dosage forms, and having potential for sustained mucosal delivery of biomacromolecules, such as HIV envelope protein-based vaccine candidates. Given the solid, lyophilised nature of these insert dosage forms, we hypothesised that antigen stability may be significantly increased compared with more conventional solubilised vaginal gel format. In this study, we prepared and tested vaginal ring devices fitted with lyophilised rod inserts containing the model antigen bovine serum albumin (BSA). Both the RiRs and the gels that were freeze-dried to prepare the inserts were evaluated for BSA stability using PAGE, turbidimetry, microbial load, MALDI-TOF and qualitative precipitate solubility measurements. When stored at 4°C, but not when stored at 40°C/75% RH, the RiR formulation offered protection against structural and conformational changes to BSA. The insert also retained matrix integrity and release characteristics. The results demonstrate that lypophilised gels can provide relative protection against degradation at lower temperatures compared to semi-solid gels. The major mechanism of degradation at 40°C/75% RH was shown to be protein aggregation. Finally, in a preliminary study, we found that addition of trehalose to the formulation significantly reduces the rate of BSA degradation compared to the original formulation when stored at 40°C/75% RH. Establishing the mechanism of degradation, and finding that degradation is decelerated in the presence of trehalose, will help inform further development of RiRs specifically and polymer based freeze-dried systems in general.
Resumo:
A self-reference fiber Michelson interferometer measurement system, which employs fiber Bragg gratings (FBGs) as in-fiber reflective mirrors and interleaves together two fiber Michelson interferometers that share the common-interferometric-optical path, is presented. One of the fiber interferometers is used to stabilise the system by the use of an electronic feedback loop to compensate the influences resulting from the environmental disturbances, while the other one is used to perform the measurement task. The influences resulting from the environmental disturbances have been eliminated by the compensating action of the electronic feedback loop, this makes the system suitable for on-line precision measurement. By means of the homodyne phase-tracking technique, the linearity of the measurement results of displacement measurements has been very high.
Resumo:
In this thesis various mathematical methods of studying the transient and dynamic stabiIity of practical power systems are presented. Certain long established methods are reviewed and refinements of some proposed. New methods are presented which remove some of the difficulties encountered in applying the powerful stability theories based on the concepts of Liapunov. Chapter 1 is concerned with numerical solution of the transient stability problem. Following a review and comparison of synchronous machine models the superiority of a particular model from the point of view of combined computing time and accuracy is demonstrated. A digital computer program incorporating all the synchronous machine models discussed, and an induction machine model, is described and results of a practical multi-machine transient stability study are presented. Chapter 2 reviews certain concepts and theorems due to Liapunov. In Chapter 3 transient stability regions of single, two and multi~machine systems are investigated through the use of energy type Liapunov functions. The treatment removes several mathematical difficulties encountered in earlier applications of the method. In Chapter 4 a simple criterion for the steady state stability of a multi-machine system is developed and compared with established criteria and a state space approach. In Chapters 5, 6 and 7 dynamic stability and small signal dynamic response are studied through a state space representation of the system. In Chapter 5 the state space equations are derived for single machine systems. An example is provided in which the dynamic stability limit curves are plotted for various synchronous machine representations. In Chapter 6 the state space approach is extended to multi~machine systems. To draw conclusions concerning dynamic stability or dynamic response the system eigenvalues must be properly interpreted, and a discussion concerning correct interpretation is included. Chapter 7 presents a discussion of the optimisation of power system small sjgnal performance through the use of Liapunov functions.
Resumo:
Pyrolysis is one of several thermochemical technologies that convert solid biomass into more useful and valuable bio-fuels. Pyrolysis is thermal degradation in the complete or partial absence of oxygen. Under carefully controlled conditions, solid biomass can be converted to a liquid known as bie-oil in 75% yield on dry feed. Bio-oil can be used as a fuel but has the drawback of having a high level of oxygen due to the presence of a complex mixture of molecular fragments of cellulose, hemicellulose and lignin polymers. Also, bio-oil has a number of problems in use including high initial viscosity, instability resulting in increased viscosity or phase separation and high solids content. Much effort has been spent on upgrading bio-oil into a more usable liquid fuel, either by modifying the liquid or by major chemical and catalytic conversion to hydrocarbons. The overall primary objective was to improve oil stability by exploring different ways. The first was to detennine the effect of feed moisture content on bio-oil stability. The second method was to try to improve bio-oil stability by partially oxygenated pyrolysis. The third one was to improve stability by co-pyrolysis with methanol. The project was carried out on an existing laboratory pyrolysis reactor system, which works well with this project without redesign or modification too much. During the finishing stages of this project, it was found that the temperature of the condenser in the product collection system had a marked impact on pyrolysis liquid stability. This was discussed in this work and further recommendation given. The quantity of water coming from the feedstock and the pyrolysis reaction is important to liquid stability. In the present work the feedstock moisture content was varied and pyrolysis experiments were carried out over a range of temperatures. The quality of the bio-oil produced was measured as water content, initial viscosity and stability. The result showed that moderate (7.3-12.8 % moisture) feedstock moisture led to more stable bio-oil. One of drawbacks of bio-oil was its instability due to containing unstable oxygenated chemicals. Catalytic hydrotreatment of the oil and zeolite cracking of pyrolysis vapour were discllssed by many researchers, the processes were intended to eliminate oxygen in the bio-oil. In this work an alternative way oxygenated pyrolysis was introduced in order to reduce oil instability, which was intended to oxidise unstable oxygenated chemicals in the bio-oil. The results showed that liquid stability was improved by oxygen addition during the pyrolysis of beech wood at an optimum air factor of about 0.09-0.15. Methanol as a postproduction additive to bio-oil has been studied by many researchers and the most effective result came from adding methanol to oil just after production. Co-pyrolysis of spruce wood with methanol was undertaken in the present work and it was found that methanol improved liquid stability as a co-pyrolysis solvent but was no more effective than when used as a postproduction additive.
Resumo:
The combination of dimethyl dioctadecyl ammonium bromide (DDA) and the synthetic cord factor trehalose dibehenate (TDB) with Ag85B-ESAT-6 (H1 fusion protein) has been found to promote strong protective immune responses against Mycobacterium tuberculosis. The development of a vaccine formulation that is able to facilitate the requirements of sterility, stability and generation of a vaccine product with acceptable composition, shelf-life and safety profile may necessitate selected alterations in vaccine formulation. This study describes the implementation of a sterilisation protocol and the use of selected lyoprotective agents in order to fulfil these requirements. Concomitantly, close analysis of any alteration in physico-chemical characteristics and parameters of immunogenicity have been examined for this promising DDA liposome-based tuberculosis vaccine. The study addresses the extensive guidelines on parameters for non-clinical assessment, suitable for liposomal vaccines and other vaccine delivery systems issued by the World Health Organisation (WHO) and the European Medicines Agency (EMEA). Physical and chemical stability was observed following alteration in formulations to include novel cryoprotectants and radiation sterilisation. Immunogenicity was maintained following these alterations and even improved by modification with lysine as the cryoprotective agent for sterilised formulations. Taken together, these results outline the successful alteration to a liposomal vaccine, representing improved formulations by rational modification, whilst maintaining biological activity.
The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability
Resumo:
This paper investigates four reference fuels and three low lignin Lolium Festuca grasses which were subjected to pyrolysis to produce pyrolysis oils. The oils were analysed to determine their quality and stability, enabling the identification of feedstock traits which affect oil stability. Two washed feedstocks were also subjected to pyrolysis to investigate whether washing can enhance pyrolysis oil quality. It was found that the mineral matter had the dominate effect on pyrolysis in compared to lignin content, in terms of pyrolysis yields for organics, char and gases. However the higher molecular weight compounds present in the pyrolysis oil are due to the lignin derived compounds as determined by results of GPC and liquid-GC/MS. The light organic fraction also increased in yield, but reduced in water content as metals increased at the expense of the lignin content. It was found that the fresh oil and aged oil had different compound intensities/concentrations, which is due to a large number of reactions occurring when the oil is aged day by day. These findings agree with previous reports which suggest that a large amount of re-polymerisation occurs as levoglucosan yields increase during the aging progress, while hydroxyacetaldehyde decrease. In summary the paper reports a window for producing a more stable pyrolysis oil by the use of energy crops, and also show that washing of biomass can improve oil quality and stability for high ash feedstocks, but less so for the energy crops.
Resumo:
The adsorption of nonionic surface active agents of polyoxyethylene glycol monoethers of n hexadecanols on polystyrene latex and nonionic cellulose polymers of hydroxyethyl cellulose, hydroxypropyl cellulose and hydroxypropyl methylcellulose on polystyrene latex and ibuprofen drug particles have been studied. The adsorbed layer thicknesses were determined by means of microelectrophoretic and viscometric methods. The conformation of the adsorbed molecules at the solid-liquid interface was deduced from the molecular areas and the adsorbed layer thicknesses. Comparison of the adsorption results obtained from polystyrene latex and ibuprofen particles was made to explain the conformation difference between these two adsorbates. Sedimentation volumes and redispersibility values were the main criteria used to evaluate suspension stability. At low concentrations of surface active agents, hard caked suspensions were found, probably due to the attraction between the uncoated areas or, the mutual adsorption of the adsorbed molecules on the bare surface of the particles in the sediment. At high concentrations of hydroxypropyl cellulose and hydroxypropyl methylcellulose, heavily caked sediments were attributed to network structure formation by the adsorbed molecules. An attempt was made to relate the characteristics of the suspensions to the potential energy of interaction curves. Generally, the agreement between theory and experiment was good, but for hydroxyethyl cellulose-ibuprofen systems discrepancies were found. Experimental studies showed that hydroxyethyl cellulose flocculated polystyrene latex over a rather wide range of concentrations; similarly, hydroxyethyl cellulose-ibuprofen suspensions were also flocculated. Therefore, it ls suggested that a term to account for flocculation energy of the polymer should be added to the total energy of interaction. A rheometric method was employed to study the flocculation energy of the polymer.
Resumo:
Temozolomide is an imidazotetrazinone with antineoplastic properties. It is structurally related to dacarbazine. Temozolomide was not metabolized in vitro by liver fractions. Chemical decomposition appears to play an important r^ole in its in vitro and in vivo disposition. In contrast, 3-methylbenzotriazinone, a structural analogue, was metabolized by hepatic microsomes to afford benzotriazinone and a hydrophilic metabolite. The cytotoxicity of temozolomide, dacarbazine, 5-[3-(hydroxy-methyl-3-methyl-triazen-1-yl]imidazole-5-carboxamide (HMMTIC) and 3-monomethyl-(triazen-1-yl)imidazole-4-carboxamide (MTIC) were investigated in TLX5 murine lymphoma cells. Unlike dacarbazine, which was not toxic, MTIC, HMMTIC and temozolomide were cytotoxic in the absence of microsomes. Decarbazine was only cytotoxic in the presence of microsomes. The formation of MTIC from dacarbazine, HMMTIC and temozolomide was determined by reversed phase high performance liquid chromatography in mixtures incubated under conditions identical to those described before. MTIC was generated chemically from temozolomide and HMMTIC metabolically from dacarbazine. Using [14C]temozolomide, it was found that, in mice, the major route of excretion of the drug is via the kidneys. An acidic metabolite (metabolite I) was found in the urine of mice which had received temozolomide but its identity has not been established. 1H NMR, UV and chemical analyses revealed that Metabolite I possesses an intact NNN linkage and the site of metabolism is at the N3 methyl group. A further acidic metabolite (metabolite II) was found in the urine of patients. Metabolite II was unambiguously identified as the 8-carboxylic acid derivative of temozolomide. In vitro cytotoxicity assay showed that ony metabolite II is cytotoxic but not metabolite I. Pharmacokinetic studies of temozolomide and MTIC in vivo were performed on mice bearing TLX5 tumour. Temozolomide was eliminated from the plasma monophasically with a t1/2 of 0.7hr. MTIC was identified as a product of decomposition. MTIC was eliminated rapidly with a t1/2 of 2min. Though temozolomide shares many biochemical and biological similarities with clinically used dacarbazine, the results obtained in this study show that it differs markedly in its pharmacokinetic properties from dacarbazine, as temozolomide produced relatively sustained plasma levels which were reflected by drug concentrations in the tumour.
Resumo:
The Alborz Mountain range separates the northern part of Iran from the southern part. It also isolates a narrow coastal strip to the south of the Caspian Sea from the Central Iran plateau. Communication between the south and north until the 1950's was via two roads and one rail link. In 1963 work was completed on a major access road via the Haraz Valley (the most physically hostile area in the region). From the beginning the road was plagued by accidents resulting from unstable slopes on either side of the valley. Heavy casualties persuaded the government to undertake major engineering works to eliminate ''black spots" and make the road safe. However, despite substantial and prolonged expenditure the problems were not solved and casualties increased steadily due to the increase in traffic using the road. Another road was built to bypass the Haraz road and opened to traffic in 1983. But closure of the Haraz road was still impossible because of the growth of settlements along the route and the need for access to other installations such as the Lar Dam. The aim of this research was to explore the possibility of applying Landsat MSS imagery to locating black spots along the road and the instability problems. Landsat data had not previously been applied to highway engineering problems in the study area. Aerial photographs are better in general than satellite images for detailed mapping, but Landsat images are superior for reconnaissance and adequate for mapping at the 1 :250,000 scale. The broad overview and lack of distortion in the Landsat imagery make the images ideal for structural interpretation. The results of Landsat digital image analysis showed that certain rock types and structural features can be delineated and mapped. The most unstable areas comprising steep slopes, free of vegetation cover can be identified using image processing techniques. Structural lineaments revealed from the image analysis led to improved results (delineation of unstable features). Damavand Quaternary volcanics were found to be the dominant rock type along a 40 km stretch of the road. These rock types are inherently unstable and partly responsible for the difficulties along the road. For more detailed geological and morphological interpretation a sample of small subscenes was selected and analysed. A special developed image analysis package was designed at Aston for use on a non specialized computing system. Using this package a new and unique method for image classification was developed, allowing accurate delineation of the critical features of the study area.