2 resultados para Sport vision
em Aston University Research Archive
Resumo:
Contact lenses seem to be the ideal method of vision correction for ametropic people who participate in sporting activities. This thesis sets out to evaluate the viewpoint of the optometric professional and that of the patient on the use of contact lenses in sport and to establish if education is needed within this area. It also aims to provide some scientific evidence on the effect of exercise on the physiology of the cornea with and without contact lenses. Silicone hydrogel contact lenses have previously been suggested to impede heat dissipation from the cornea compared to mid water hydrogels. This was further demonstrated with exercise. The physiological integrity of the cornea is dependant on the amount of oxygen available to its surfaces. Contact lenses can disrupt the diffusion of oxygen to the cornea. Previous methods of measuring the oxygen consumption of the cornea have been limited by their invasive nature and assessment of only a small surface area of the cornea. They are not suitable to measure corneal oxygen consumption during exercise with and without contact lenses. A new method needed to be established. This was achieved by designing a novel method by the use of an oxygen sensor inside an airtight goggle using dynamic quenching of luminescence method. This established a non-contact way of measuring the effect oxygen uptake with and without contact lenses in vivo, allowing the contact lens to be undisturbed in their natural environment. The new method differentiated between the closed-eye and the open-eye condition with a good within-visit repeatability. It also illustrated that the cornea utilises oxygen at a faster rate during controlled aerobic exercise at moderate intensity. New contact lenses are available specifically for sport, these claim to reduce glare and increase contrast for daylight outdoor sports. However, visual benefits of these types of contact lenses cannot be measured easily in an indoor clinical environment, such as the optometric practice. To demonstrate any potential benefits of these lenses emulation of them should be conducted outdoors.
Resumo:
Golfers, coaches and researchers alike, have all keyed in on golf putting as an important aspect of overall golf performance. Of the three principle putting tasks (green reading, alignment and the putting action phase), the putting action phase has attracted the most attention from coaches, players and researchers alike. This phase includes the alignment of the club with the ball, the swing, and ball contact. A significant amount of research in this area has focused on measuring golfer’s vision strategies with eye tracking equipment. Unfortunately this research suffers from a number of shortcomings, which limit its usefulness. The purpose of this thesis was to address some of these shortcomings. The primary objective of this thesis was to re-evaluate golfer’s putting vision strategies using binocular eye tracking equipment and to define a new, optimal putting vision strategy which was associated with both higher skill and success. In order to facilitate this research, bespoke computer software was developed and validated, and new gaze behaviour criteria were defined. Additionally, the effects of training (habitual) and competition conditions on the putting vision strategy were examined, as was the effect of ocular dominance. Finally, methods for improving golfer’s binocular vision strategies are discussed, and a clinical plan for the optometric management of the golfer’s vision is presented. The clinical management plan includes the correction of fundamental aspects of golfers’ vision, including monocular refractive errors and binocular vision defects, as well as enhancement of their putting vision strategy, with the overall aim of improving performance on the golf course. This research has been undertaken in order to gain a better understanding of the human visual system and how it relates to the sport performance of golfers specifically. Ultimately, the analysis techniques and methods developed are applicable to the assessment of visual performance in all sports.