4 resultados para Spin preparation efficiency

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to prepare a ferromagnetic polymer using the design elements of molecular magnets. This involved the preparation of co-polyradicals of phenylacetylenes bearing nitronyl nitroxides and nitro/cyano groups. The magnetic properties of the materials were determined using a SQUID magnetometer. A novel rhodium catalyst, Rh(NBD)(NH3)Cl, was prepared in order to obtain good yields of polymerisation. A wide range of substituted phenylacetylenes were first homopolymerised in order to assess the efficiency of the catalyst. Yields were generally high, between 75% and 98%, and the time of polymerisation was short (one hour). SEC analysis revealed that the Mw of the polymers were in the range of 200,000 and 250,000. The discovery that phenylboronic acid acts a co-catalyst for the polymerisation served to increase the yields by 10% to 20% but the Mw of the polymers was reduced to approximately 100,000. Co-polyradicals were prepared in good to excellent yield using the new catalyst. The magnetic properties in the temperature range of 300K to 1.8K were investigated by SQUID, which revealed a spin glass system, antiferromagnets and possible dipolar magnets. Short-range ferromagnetic interactions between 300K and 100K were found in a co-polyradical containing nitronyl nitroxide and cyano substituted monomers. The magnetic properties were dependent upon both the type of monomers utilised and the ratio between them. The effects of ring substituents on the terminal alkyne have been studied by carbon-13 NMR. There was no correlation however, between the chemical shift of terminal alkyne and the polymerisability of the monomer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The preparation and characterization of two new neutral ferric complexes with desolvation-induced discontinuous spin-state transformation above room temperature are reported. The compounds, Fe(Hthpy)(thpy).CH3OH.3H2O (1) and Fe(Hmthpy)(mthpy).2H2O (2), are low-spin (LS) at room temperature and below, whereas their nonsolvated forms are high-spin (HS), exhibiting zero-field splitting. In these complexes, Hthpy, Hmthpy, and thpy, mthpy are the deprotonated forms of pyridoxal thiosemicarbazone and pyridoxal methylthiosemicarbazone, respectively; each is an O,N,S-tridentate ligand. The molecular structures have been determined at 100(1) K using single-crystal X-ray diffraction techniques and resulted in a triclinic system (space group P1) and monoclinic unit cell (space group P21/c) for 1 and 2, respectively. Structures were refined to the final error indices, where RF = 0.0560 for 1 and RF = 0.0522 for 2. The chemical inequivalence of the ligands was clearly established, for the "extra" hydrogen atom on the monodeprotonated ligands (Hthpy, Hmthpy) was found to be bound to the nitrogen of the pyridine ring. The ligands are all of the thiol form; the doubly deprotonated chelates (thpy, mthpy) have C-S bond lengths slightly longer than those of the singly deprotonated forms. There is a three-dimensional network of hydrogen bonds in both compounds. The discontinuous spin-state transformation is accompanied with liberation of solvate molecules. This is evidenced also from DSC analysis. Heat capacity data for the LS and HS phases are tabulated at selected temperatures, the values of the enthalpy and entropy changes connected with the change of spin state were reckoned at DeltaH = 12.5 0.3 kJ mol-1 and DeltaS = 33.3 0.8 J mol-1 K-1, respectively, for 1 and DeltaH = 6.5 0.3 kJ mol-1 and DeltaS = 17.6 0.8 J mol-1 K-1, respectively, for 2

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a polygeneration system that can run on neat plant oils, such as Jatropha and Pongamia, or standard diesel fuel. A prototype has been constructed using a compression ignition engine of 9.9 kW shaft output. It consumes 3 L/h of fuel and will produce 40 kg/h of ice by means of an adsorption refrigerator powered from the engine jacket heat. Steaming of rice, deep and shallow frying, and other types of food preparation heated by the exhaust gas have been demonstrated. In addition, the feasibility of producing distilled water by means of multiple-effect distillation powered by the engine waste heat is shown. Overall plant efficiency and potential savings in greenhouse gas emissions are discussed. © 2012 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fullerene end-capped polymer-compatibilizer based on poly(3-hexylthiophene) (P3HT) was synthesized and demonstrated to have a remarkable effect on both the stability and efficiency of devices made from exemplar P3HT and [6,6]-phenyl C61-butyric acid methyl ester (PCBM). P3HT with ethynyl chain-ends and α-azido-ω-bromo-PS were prepared via Grignard metathesis (GRIM) and atom transfer radical polymerisation, respectively. “Click” chemistry resulted in the preparation of poly(3-hexylthiophene)-block-ω-bromo-polystyrene (P3HT-b-PS-Br), and subsequent atom transfer radical addition chemistry with fullerene (C60) yielded the donor–acceptor block copolymer P3HT-b-PS-C60. Both P3HT-b-PS-Br and P3HT-b-PS-C60 were considered as compatibilizers with P3HT/PCBM blends, with the study detailing effects on active-layer morphology, device efficiency and stability. When used at low concentrations, both P3HT-b-PS-Br (1%) and P3HT-b-PS-C60 (0.5%) resulted in considerable 28% and 35% increases in efficiencies with respect to devices made from P3HT/PCBM alone. Furthermore, P3HT-b-PS-C60 (0.5%) resulted in an important improvement in device stability.