4 resultados para Spectral Space

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the face of global population growth and the uneven distribution of water supply, a better knowledge of the spatial and temporal distribution of surface water resources is critical. Remote sensing provides a synoptic view of ongoing processes, which addresses the intricate nature of water surfaces and allows an assessment of the pressures placed on aquatic ecosystems. However, the main challenge in identifying water surfaces from remotely sensed data is the high variability of spectral signatures, both in space and time. In the last 10 years only a few operational methods have been proposed to map or monitor surface water at continental or global scale, and each of them show limitations. The objective of this study is to develop and demonstrate the adequacy of a generic multi-temporal and multi-spectral image analysis method to detect water surfaces automatically, and to monitor them in near-real-time. The proposed approach, based on a transformation of the RGB color space into HSV, provides dynamic information at the continental scale. The validation of the algorithm showed very few omission errors and no commission errors. It demonstrates the ability of the proposed algorithm to perform as effectively as human interpretation of the images. The validation of the permanent water surface product with an independent dataset derived from high resolution imagery, showed an accuracy of 91.5% and few commission errors. Potential applications of the proposed method have been identified and discussed. The methodology that has been developed 27 is generic: it can be applied to sensors with similar bands with good reliability, and minimal effort. Moreover, this experiment at continental scale showed that the methodology is efficient for a large range of environmental conditions. Additional preliminary tests over other continents indicate that the proposed methodology could also be applied at the global scale without too many difficulties

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A free space quantum key distribution system has been demonstrated. Consideration has been given to factors such as field of view and spectral width, to cut down the deleterious effect from background light levels. Suitable optical sources such as lasers and RCLEDs have been investigated as well as optimal wavelength choices, always with a view to building a compact and robust system. The implementation of background reduction measures resulted in a system capable of operating in daylight conditions. An autonomous system was left running and generating shared key material continuously for over 7 days. © 2009 Published by Elsevier B.V..

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Error and uncertainty in remotely sensed data come from several sources, and can be increased or mitigated by the processing to which that data is subjected (e.g. resampling, atmospheric correction). Historically the effects of such uncertainty have only been considered overall and evaluated in a confusion matrix which becomes high-level meta-data, and so is commonly ignored. However, some of the sources of uncertainty can be explicity identified and modelled, and their effects (which often vary across space and time) visualized. Others can be considered overall, but their spatial effects can still be visualized. This process of visualization is of particular value for users who need to assess the importance of data uncertainty for their own practical applications. This paper describes a Java-based toolkit, which uses interactive and linked views to enable visualization of data uncertainty by a variety of means. This allows users to consider error and uncertainty as integral elements of image data, to be viewed and explored, rather than as labels or indices attached to the data. © 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present comprehensive design rules to optimize the process of spectral compression arising from nonlinear pulse propagation in an optical fiber. Extensive numerical simulations are used to predict the performance characteristics of the process as well as to identify the optimal operational conditions within the space of system parameters. It is shown that the group velocity dispersion of the fiber is not detrimental and, in fact, helps achieve optimum compression. We also demonstrate that near-transform-limited rectangular and parabolic pulses can be generated in the region of optimum compression.