22 resultados para Specific theories and interaction models
em Aston University Research Archive
Resumo:
The leadership categorisation theory suggests that followers rely on a hierarchical cognitive structure in perceiving leaders and the leadership process, which consists of three levels; superordinate, basic and subordinate. The predominant view is that followers rely on Implicit Leadership Theories (ILTs) at the basic level in making judgments about managers. The thesis examines whether this presumption is true by proposing and testing two competing conceptualisations; namely the congruence between the basic level ILTs (general leader) and actual manager perceptions, and subordinate level ILTs (job-specific leader) and actual manager. The conceptualisation at the job-specific level builds on context-related assertions of the ILT explanatory models: leadership categorisation, information processing and connectionist network theories. Further, the thesis addresses the effects of ILT congruence at the group level. The hypothesised model suggests that Leader-Member Exchange (LMX) will act as a mediator between ILT congruence and outcomes. Three studies examined the proposed model. The first was cross-sectional with 175 students reporting on work experience during a 1-year industrial placement. The second was longitudinal and had a sample of 343 students engaging in a business simulation in groups with formal leadership. The final study was a cross-sectional survey in several organisations with a sample of 178. A novel approach was taken to congruence analysis; the hypothesised models were tested using Latent Congruence Modelling (LCM), which accounts for measurement error and overcomes the majority of limitations of traditional approaches. The first two studies confirm the traditional theorised view that employees rely on basic-level ILTs in making judgments about their managers with important implications, and show that LMX mediates the relationship between ILT congruence and work-related outcomes (performance, job satisfaction, well-being, task satisfaction, intragroup conflict, group satisfaction, team realness, team-member exchange, group performance). The third study confirms this with conflict, well-being, self-rated performance and commitment as outcomes.
Resumo:
This article characterizes key weaknesses in the ability of current digital libraries to support scholarly inquiry, and as a way to address these, proposes computational services grounded in semiformal models of the naturalistic argumentation commonly found in research literatures. It is argued that a design priority is to balance formal expressiveness with usability, making it critical to coevolve the modeling scheme with appropriate user interfaces for argument construction and analysis. We specify the requirements for an argument modeling scheme for use by untrained researchers and describe the resulting ontology, contrasting it with other domain modeling and semantic web approaches, before discussing passive and intelligent user interfaces designed to support analysts in the construction, navigation, and analysis of scholarly argument structures in a Web-based environment. © 2007 Wiley Periodicals, Inc. Int J Int Syst 22: 17–47, 2007.
Resumo:
A significant forum of scholarly and practitioner-based research has developed in recent years that has sought both to theorize upon and empirically measure the competitiveness of regions. However, the disparate and fragmented nature of this work has led to the lack of a substantive theoretical foundation underpinning the various analyses and measurement methodologies employed. The aim of this paper is to place the regional competitiveness discourse within the context of theories of economic growth, and more particularly, those concerning regional economic growth. It is argued that regional competitiveness models are usually implicitly constructed in the lineage of endogenous growth frameworks, whereby deliberate investments in factors such as human capital and knowledge are considered to be key drivers of growth differentials. This leads to the suggestion that regional competitiveness can be usefully defined as the capacity and capability of regions to achieve economic growth relative to other regions at a similar overall stage of economic development, which will usually be within their own nation or continental bloc. The paper further assesses future avenues for theoretical and methodological exploration, highlighting the role of institutions, resilience and, well-being in understanding how the competitiveness of regions influences their long-term evolution.
Resumo:
This paper presents a forecasting technique for forward energy prices, one day ahead. This technique combines a wavelet transform and forecasting models such as multi- layer perceptron, linear regression or GARCH. These techniques are applied to real data from the UK gas markets to evaluate their performance. The results show that the forecasting accuracy is improved significantly by using the wavelet transform. The methodology can be also applied to forecasting market clearing prices and electricity/gas loads.
Resumo:
In this paper, the exchange rate forecasting performance of neural network models are evaluated against the random walk, autoregressive moving average and generalised autoregressive conditional heteroskedasticity models. There are no guidelines available that can be used to choose the parameters of neural network models and therefore, the parameters are chosen according to what the researcher considers to be the best. Such an approach, however,implies that the risk of making bad decisions is extremely high, which could explain why in many studies, neural network models do not consistently perform better than their time series counterparts. In this paper, through extensive experimentation, the level of subjectivity in building neural network models is considerably reduced and therefore giving them a better chance of Forecasting exchange rates with linear and nonlinear models 415 performing well. The results show that in general, neural network models perform better than the traditionally used time series models in forecasting exchange rates.
Resumo:
Jackson (2005) developed a hybrid model of personality and learning, known as the learning styles profiler (LSP) which was designed to span biological, socio-cognitive, and experiential research foci of personality and learning research. The hybrid model argues that functional and dysfunctional learning outcomes can be best understood in terms of how cognitions and experiences control, discipline, and re-express the biologically based scale of sensation-seeking. In two studies with part-time workers undertaking tertiary education (N=137 and 58), established models of approach and avoidance from each of the three different research foci were compared with Jackson's hybrid model in their predictiveness of leadership, work, and university outcomes using self-report and supervisor ratings. Results showed that the hybrid model was generally optimal and, as hypothesized, that goal orientation was a mediator of sensation-seeking on outcomes (work performance, university performance, leader behaviours, and counterproductive work behaviour). Our studies suggest that the hybrid model has considerable promise as a predictor of work and educational outcomes as well as dysfunctional outcomes.
Resumo:
The Q parameter scales differently with the noise power for the signal-noise and the noise-noise beating terms in scalar and vector models. Some procedures for including noise in the scalar model largely under-estimate the Q parameter. We propose a simple method for including noise within a scalar model which will allow both the noise-noise dominated limit and the signal-noise dominated limit to be treated consistently. © 2005 Elsevier B.V. All rights reserved.
Resumo:
The Q parameter scales differently with the noise power for the signal-noise and the noise-noise beating terms in scalar and vector models. Some procedures for including noise in the scalar model largely under-estimate the Q parameter.
Resumo:
In this paper the exchange rate forecasting performance of neural network models are evaluated against random walk and a range of time series models. There are no guidelines available that can be used to choose the parameters of neural network models and therefore the parameters are chosen according to what the researcher considers to be the best. Such an approach, however, implies that the risk of making bad decisions is extremely high which could explain why in many studies neural network models do not consistently perform better than their time series counterparts. In this paper through extensive experimentation the level of subjectivity in building neural network models is considerably reduced and therefore giving them a better chance of performing well. Our results show that in general neural network models perform better than traditionally used time series models in forecasting exchange rates.
Resumo:
This paper presents some forecasting techniques for energy demand and price prediction, one day ahead. These techniques combine wavelet transform (WT) with fixed and adaptive machine learning/time series models (multi-layer perceptron (MLP), radial basis functions, linear regression, or GARCH). To create an adaptive model, we use an extended Kalman filter or particle filter to update the parameters continuously on the test set. The adaptive GARCH model is a new contribution, broadening the applicability of GARCH methods. We empirically compared two approaches of combining the WT with prediction models: multicomponent forecasts and direct forecasts. These techniques are applied to large sets of real data (both stationary and non-stationary) from the UK energy markets, so as to provide comparative results that are statistically stronger than those previously reported. The results showed that the forecasting accuracy is significantly improved by using the WT and adaptive models. The best models on the electricity demand/gas price forecast are the adaptive MLP/GARCH with the multicomponent forecast; their MSEs are 0.02314 and 0.15384 respectively.
Resumo:
Ernst Mach observed that light or dark bands could be seen at abrupt changes of luminance gradient in the absence of peaks or troughs in luminance. Many models of feature detection share the idea that bars, lines, and Mach bands are found at peaks and troughs in the output of even-symmetric spatial filters. Our experiments assessed the appearance of Mach bands (position and width) and the probability of seeing them on a novel set of generalized Gaussian edges. Mach band probability was mainly determined by the shape of the luminance profile and increased with the sharpness of its corners, controlled by a single parameter (n). Doubling or halving the size of the images had no significant effect. Variations in contrast (20%-80%) and duration (50-300 ms) had relatively minor effects. These results rule out the idea that Mach bands depend simply on the amplitude of the second derivative, but a multiscale model, based on Gaussian-smoothed first- and second-derivative filtering, can account accurately for the probability and perceived spatial layout of the bands. A key idea is that Mach band visibility depends on the ratio of second- to first-derivative responses at peaks in the second-derivative scale-space map. This ratio is approximately scale-invariant and increases with the sharpness of the corners of the luminance ramp, as observed. The edges of Mach bands pose a surprisingly difficult challenge for models of edge detection, but a nonlinear third-derivative operation is shown to predict the locations of Mach band edges strikingly well. Mach bands thus shed new light on the role of multiscale filtering systems in feature coding. © 2012 ARVO.
Resumo:
While many offline retailers have developed informational websites that offer information on products and prices, the key question for such informational websites is whether they can increase revenues via web-to-store shopping. The current paper draws on the information search literature to specify and test hypotheses regarding the offline revenue impact of adding an informational website. Explicitly considering marketing efforts, a latent class model distinguishes consumer segments with different short-term revenue effects, while a Vector Autoregressive model on these segments reveals different long-term marketing response. We find that the offline revenue impact of the informational website critically depends on the product category and customer segment. The lower online search costs are especially beneficial for sensory products and for customers distant from the store. Moreover, offline revenues increase most for customers with high web visit frequency. We find that customers in some segments buy more and more expensive products, suggesting that online search and offline purchases are complements. In contrast, customers in a particular segment reduce their shopping trips, suggesting their online activities partially substitute for experiential shopping in the physical store. Hence, offline retailers should use specific online activities to target specific product categories and customer segments.
Resumo:
This article reflects on the UK coalition government’s ‘alternative models’ agenda, specifically in terms of the adoption of new models of service delivery by arm’s-length bodies (ALBs). It provides an overview of the alternative models agenda and discusses barriers to implementation. These include practical challenges involved in the set up of alternative models, the role of sponsor departments, and the effective communication of best practice. Finally, the article highlights some issues for further discussion.