5 resultados para Species distribution modelling

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Predicting species potential and future distribution has become a relevant tool in biodiversity monitoring and conservation.In this data article we present the suitability map of a virtual species generated based on two bioclimatic variables, and a dataset containing more than 700,000 random observations at the extent of Europe. The dataset includes spatial attributes such as: distance to roads, protected areas, country codes, and the habitat suitability of two spatially clustered species (grassland and forest species) and a wide-spread species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the direct adaptive inverse control of nonlinear multivariable systems with different delays between every input-output pair. In direct adaptive inverse control, the inverse mapping is learned from examples of input-output pairs. This makes the obtained controller sub optimal, since the network may have to learn the response of the plant over a larger operational range than necessary. Moreover, in certain applications, the control problem can be redundant, implying that the inverse problem is ill posed. In this paper we propose a new algorithm which allows estimating and exploiting uncertainty in nonlinear multivariable control systems. This approach allows us to model strongly non-Gaussian distribution of control signals as well as processes with hysteresis. The proposed algorithm circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The majority of studies of the effects of environmental factors on lichen growth have been carried out in the field. Growth of lichens in the field has been measured as absolute growth rate (e.g., length growth, radial growth, diameter growth, area growth, or dry weight gain per unit of time) or as a relative growth rate, expressed per unit of thallus area or weight, e.g., thallus specific weight. Seasonal fluctuations in growth in the field often correlate best with changes in average or total rainfall or frequency of rain events through the year. In some regions of the world, temperature is also an important climatic factor influencing growth. Interactions between microclimatic factors such as light intensity, temperature, and moisture are particularly important in determining local differences in growth especially in relation to aspect and slope of rock surface, or height on a tree. Factors associated with the substratum including type, chemistry, texture, and porosity can all influence growth. In addition, growth can be influenced by the degree of nutrient enrichment of the substratum associated with bird droppings, nitrogen, phosphate, salinity, or pollution. Effects of environmental factors on growth can act directly to restrict species distribution or indirectly by altering the competitive balance among different species in a community.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wet woodlands have been recognised as a priority habitat and have featured in the UK BAP since 1994. Although this has been acknowledged in a number of UK policies and guidelines, there is little information relating to their detailed ecology and management. This research, focusing on lowland Alnus glutinosa woodlands, aimed to address this data paucity through the analysis of species requirements and to develop a methodology to guide appropriate management for this habitat for the benefit of wildlife. To achieve these aims data were collected from 64 lowland Alnus glutinosa woodlands and a review of the literature was undertaken to identify species associated with the target habitat. The groundflora species found to be associated with lowland Alnus glutinosa woodland were assessed in relation to their optimal environmental conditions (Ellenberg indicator values) and survival strategies (Grime CSR-Strategy) to determine the characteristics (Characters of a Habitat; CoaHs) and range of intra-site conditions (Niches of a Habitat; NoaH). The methodologies, using CSR and Ellenberg indicator values in combination, were developed to determine NoaHs and were tested both quantitatively and qualitatively at different lowland Alnus glutinosa sites. The existence of CoaHs and NoaHs in actual sites was verified by detailed quadrat data gathered at three Alnus glutinosa woodlands at Stonebridge Meadows, Warwickshire, UK and analysed using TWINSPAN and DCA ordination. The CoaHs and NoaHs and their component species were confirmed to have the potential to occur in a particular woodland. Following a literature search relating to the management of small wet woodlands within the UK, in conjunction with the current research, broad principles and strategies were identified for the management of lowland Alnus glutinosa woodland. Using the groundflora composition, an innovative procedure is developed and described for identifying the potential variation within a particular site and determining its appropriate management. Case studies were undertaken on distinct woodlands and the methodology proved effective.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dynamic asset rating is one of a number of techniques that could be used to facilitate low carbon electricity network operation. This paper focusses on distribution level transformer dynamic rating under this context. The models available for use with dynamic asset rating are discussed and compared using measured load and weather conditions from a trial Network area within Milton Keynes. The paper then uses the most appropriate model to investigate, through simulation, the potential gains in dynamic rating compared to static rating under two transformer cooling methods to understand the potential gain to the Network Operator.