2 resultados para Species composition
em Aston University Research Archive
Resumo:
Wet woodlands have been recognised as a priority habitat and have featured in the UK BAP since 1994. Although this has been acknowledged in a number of UK policies and guidelines, there is little information relating to their detailed ecology and management. This research, focusing on lowland Alnus glutinosa woodlands, aimed to address this data paucity through the analysis of species requirements and to develop a methodology to guide appropriate management for this habitat for the benefit of wildlife. To achieve these aims data were collected from 64 lowland Alnus glutinosa woodlands and a review of the literature was undertaken to identify species associated with the target habitat. The groundflora species found to be associated with lowland Alnus glutinosa woodland were assessed in relation to their optimal environmental conditions (Ellenberg indicator values) and survival strategies (Grime CSR-Strategy) to determine the characteristics (Characters of a Habitat; CoaHs) and range of intra-site conditions (Niches of a Habitat; NoaH). The methodologies, using CSR and Ellenberg indicator values in combination, were developed to determine NoaHs and were tested both quantitatively and qualitatively at different lowland Alnus glutinosa sites. The existence of CoaHs and NoaHs in actual sites was verified by detailed quadrat data gathered at three Alnus glutinosa woodlands at Stonebridge Meadows, Warwickshire, UK and analysed using TWINSPAN and DCA ordination. The CoaHs and NoaHs and their component species were confirmed to have the potential to occur in a particular woodland. Following a literature search relating to the management of small wet woodlands within the UK, in conjunction with the current research, broad principles and strategies were identified for the management of lowland Alnus glutinosa woodland. Using the groundflora composition, an innovative procedure is developed and described for identifying the potential variation within a particular site and determining its appropriate management. Case studies were undertaken on distinct woodlands and the methodology proved effective.
Resumo:
The rapid global loss of biodiversity has led to a proliferation of systematic conservation planning methods. In spite of their utility and mathematical sophistication, these methods only provide approximate solutions to real-world problems where there is uncertainty and temporal change. The consequences of errors in these solutions are seldom characterized or addressed. We propose a conceptual structure for exploring the consequences of input uncertainty and oversimpli?ed approximations to real-world processes for any conservation planning tool or strategy. We then present a computational framework based on this structure to quantitatively model species representation and persistence outcomes across a range of uncertainties. These include factors such as land costs, landscape structure, species composition and distribution, and temporal changes in habitat. We demonstrate the utility of the framework using several reserve selection methods including simple rules of thumb and more sophisticated tools such as Marxan and Zonation. We present new results showing how outcomes can be strongly affected by variation in problem characteristics that are seldom compared across multiple studies. These characteristics include number of species prioritized, distribution of species richness and rarity, and uncertainties in the amount and quality of habitat patches. We also demonstrate how the framework allows comparisons between conservation planning strategies and their response to error under a range of conditions. Using the approach presented here will improve conservation outcomes and resource allocation by making it easier to predict and quantify the consequences of many different uncertainties and assumptions simultaneously. Our results show that without more rigorously generalizable results, it is very dif?cult to predict the amount of error in any conservation plan. These results imply the need for standard practice to include evaluating the effects of multiple real-world complications on the behavior of any conservation planning method.