5 resultados para Spatial Prediction Maps

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Very large spatially-referenced datasets, for example, those derived from satellite-based sensors which sample across the globe or large monitoring networks of individual sensors, are becoming increasingly common and more widely available for use in environmental decision making. In large or dense sensor networks, huge quantities of data can be collected over small time periods. In many applications the generation of maps, or predictions at specific locations, from the data in (near) real-time is crucial. Geostatistical operations such as interpolation are vital in this map-generation process and in emergency situations, the resulting predictions need to be available almost instantly, so that decision makers can make informed decisions and define risk and evacuation zones. It is also helpful when analysing data in less time critical applications, for example when interacting directly with the data for exploratory analysis, that the algorithms are responsive within a reasonable time frame. Performing geostatistical analysis on such large spatial datasets can present a number of problems, particularly in the case where maximum likelihood. Although the storage requirements only scale linearly with the number of observations in the dataset, the computational complexity in terms of memory and speed, scale quadratically and cubically respectively. Most modern commodity hardware has at least 2 processor cores if not more. Other mechanisms for allowing parallel computation such as Grid based systems are also becoming increasingly commonly available. However, currently there seems to be little interest in exploiting this extra processing power within the context of geostatistics. In this paper we review the existing parallel approaches for geostatistics. By recognising that diffeerent natural parallelisms exist and can be exploited depending on whether the dataset is sparsely or densely sampled with respect to the range of variation, we introduce two contrasting novel implementations of parallel algorithms based on approximating the data likelihood extending the methods of Vecchia [1988] and Tresp [2000]. Using parallel maximum likelihood variogram estimation and parallel prediction algorithms we show that computational time can be significantly reduced. We demonstrate this with both sparsely sampled data and densely sampled data on a variety of architectures ranging from the common dual core processor, found in many modern desktop computers, to large multi-node super computers. To highlight the strengths and weaknesses of the diffeerent methods we employ synthetic data sets and go on to show how the methods allow maximum likelihood based inference on the exhaustive Walker Lake data set.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Perception of Mach bands may be explained by spatial filtering ('lateral inhibition') that can be approximated by 2nd derivative computation, and several alternative models have been proposed. To distinguish between them, we used a novel set of ‘generalised Gaussian’ images, in which the sharp ramp-plateau junction of the Mach ramp was replaced by smoother transitions. The images ranged from a slightly blurred Mach ramp to a Gaussian edge and beyond, and also included a sine-wave edge. The probability of seeing Mach Bands increased with the (relative) sharpness of the junction, but was largely independent of absolute spatial scale. These data did not fit the predictions of MIRAGE, nor 2nd derivative computation at a single fine scale. In experiment 2, observers used a cursor to mark features on the same set of images. Data on perceived position of Mach bands did not support the local energy model. Perceived width of Mach bands was poorly explained by a single-scale edge detection model, despite its previous success with Mach edges (Wallis & Georgeson, 2009, Vision Research, 49, 1886-1893). A more successful model used separate (odd and even) scale-space filtering for edges and bars, local peak detection to find candidate features, and the MAX operator to compare odd- and even-filter response maps (Georgeson, VSS 2006, Journal of Vision 6(6), 191a). Mach bands are seen when there is a local peak in the even-filter (bar) response map, AND that peak value exceeds corresponding responses in the odd-filter (edge) maps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes the development of a simple and accurate method for estimating the quantity and composition of household waste arisings. The method is based on the fundamental tenet that waste arisings can be predicted from information on the demographic and socio-economic characteristics of households, thus reducing the need for the direct measurement of waste arisings to that necessary for the calibration of a prediction model. The aim of the research is twofold: firstly to investigate the generation of waste arisings at the household level, and secondly to devise a method for supplying information on waste arisings to meet the needs of waste collection and disposal authorities, policy makers at both national and European level and the manufacturers of plant and equipment for waste sorting and treatment. The research was carried out in three phases: theoretical, empirical and analytical. In the theoretical phase specific testable hypotheses were formulated concerning the process of waste generation at the household level. The empirical phase of the research involved an initial questionnaire survey of 1277 households to obtain data on their socio-economic characteristics, and the subsequent sorting of waste arisings from each of the households surveyed. The analytical phase was divided between (a) the testing of the research hypotheses by matching each household's waste against its demographic/socioeconomic characteristics (b) the development of statistical models capable of predicting the waste arisings from an individual household and (c) the development of a practical method for obtaining area-based estimates of waste arisings using readily available data from the national census. The latter method was found to represent a substantial improvement over conventional methods of waste estimation in terms of both accuracy and spatial flexibility. The research therefore represents a substantial contribution both to scientific knowledge of the process of household waste generation, and to the practical management of waste arisings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is proposed that threat-evoked anxiety and spatial Working Memory (WM) rely on a common visuospatial attention mechanism. A prediction of this hypothesis is that spatial but not verbal WM should be disrupted in conditions of threat anxiety. Participants performed verbal and spatial n-back WM tasks in the presence or absence of threat of shock (shocks were not delivered). The presence of anxiety was assessed via heart rate recordings and self-report. Both measures clearly distinguished between WM blocks associated with threat of shock (Threat) and blocks, in which threat was absent (Safety). Performance on the spatial WM task was impaired in Threat relative to Safety. Furthermore, the more anxiety participants reported and the higher their heart rate in Threat compared to Safety, the more impaired was their spatial WM performance. This effect was not observed for verbal WM. The results indicate selective disruption of spatial WM performance by threat-evoked anxiety, interpreted in terms of more overlap in visuospatial attention between anxiety and spatial WM vs. anxiety and verbal WM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein-DNA interactions are involved in many fundamental biological processes essential for cellular function. Most of the existing computational approaches employed only the sequence context of the target residue for its prediction. In the present study, for each target residue, we applied both the spatial context and the sequence context to construct the feature space. Subsequently, Latent Semantic Analysis (LSA) was applied to remove the redundancies in the feature space. Finally, a predictor (PDNAsite) was developed through the integration of the support vector machines (SVM) classifier and ensemble learning. Results on the PDNA-62 and the PDNA-224 datasets demonstrate that features extracted from spatial context provide more information than those from sequence context and the combination of them gives more performance gain. An analysis of the number of binding sites in the spatial context of the target site indicates that the interactions between binding sites next to each other are important for protein-DNA recognition and their binding ability. The comparison between our proposed PDNAsite method and the existing methods indicate that PDNAsite outperforms most of the existing methods and is a useful tool for DNA-binding site identification. A web-server of our predictor (http://hlt.hitsz.edu.cn:8080/PDNAsite/) is made available for free public accessible to the biological research community.