1 resultado para Spam
em Aston University Research Archive
Resumo:
In this poster we presented our preliminary work on the study of spammer detection and analysis with 50 active honeypot profiles implemented on Weibo.com and QQ.com microblogging networks. We picked out spammers from legitimate users by manually checking every captured user's microblogs content. We built a spammer dataset for each social network community using these spammer accounts and a legitimate user dataset as well. We analyzed several features of the two user classes and made a comparison on these features, which were found to be useful to distinguish spammers from legitimate users. The followings are several initial observations from our analysis on the features of spammers captured on Weibo.com and QQ.com. ¦The following/follower ratio of spammers is usually higher than legitimate users. They tend to follow a large amount of users in order to gain popularity but always have relatively few followers. ¦There exists a big gap between the average numbers of microblogs posted per day from these two classes. On Weibo.com, spammers post quite a lot microblogs every day, which is much more than legitimate users do; while on QQ.com spammers post far less microblogs than legitimate users. This is mainly due to the different strategies taken by spammers on these two platforms. ¦More spammers choose a cautious spam posting pattern. They mix spam microblogs with ordinary ones so that they can avoid the anti-spam mechanisms taken by the service providers. ¦Aggressive spammers are more likely to be detected so they tend to have a shorter life while cautious spammers can live much longer and have a deeper influence on the network. The latter kind of spammers may become the trend of social network spammer. © 2012 IEEE.