12 resultados para Source Code Analysis
em Aston University Research Archive
Resumo:
Background: Recent morpho-functional evidence pointed out that abnormalities in the thalamus could play a major role in the expression of migraine neurophysiological and clinical correlates. Whether this phenomenon is primary or secondary to its functional disconnection from the brainstem remains to be determined. We used a Functional Source Separation algorithm of EEG signal to extract the activity of the different neuronal pools recruited at different latencies along the somatosensory pathway in interictal migraine without aura (MO) patients. Methods: Twenty MO patients and 20 healthy volunteers (HV) underwent EEG recording. Four ad-hoc functional constraints, two sub-cortical (FS14 at brainstem and FS16 at thalamic level) and two cortical (FS20 radial and FS22 tangential parietal sources), were used to extract the activity of successive stages of somatosensory information processing in response to the separate left and right median nerve electric stimulation. A band-pass digital filter (450-750 Hz) was applied offline in order to extract high-frequency oscillatory (HFO) activity from the broadband EEG signal. Results: In both stimulated sides, significant reduced sub-cortical brainstem (FS14) and thalamic (FS16) HFO activations characterized MO patients when compared with HV. No difference emerged in the two cortical HFO activations between the two groups. Conclusions: Present results are the first neurophysiological evidence supporting the hypothesis that a functional disconnection of the thalamus from the subcortical monoaminergic system may underline the interictal cortical abnormal information processing in migraine. Further studies are needed to investigate the precise directional connectivity across the entire primary subcortical and cortical somatosensory pathway in interictal MO. Written informed consent to publication was obtained from the patient(s).
Resumo:
Extensible Business Reporting Language (XBRL) is being adopted by European regulators as a data standard for the exchange of business information. This paper examines the approach of XBRL International (XII) to the meta-data standard's development and diffusion. We theorise the development of XBRL using concepts drawn from a model of successful open source projects. Comparison of the open source model to XBRL enables us to identify a number of interesting similarities and differences. In common with open source projects, the benefits and progress of XBRL have been overstated and 'hyped' by enthusiastic participants. While XBRL is an open data standard in terms of access to the equivalent of its 'source code' we find that the governance structure of the XBRL consortium is significantly different to a model open source approach. The barrier to participation that is created by requiring paid membership and a focus on transacting business at physical conferences and meetings is identified as particularly critical. Decisions about the technical structure of XBRL, the regulator-led pattern of adoption and the organisation of XII are discussed. Finally areas for future research are identified.
Resumo:
Code division multiple access (CDMA) in which the spreading code assignment to users contains a random element has recently become a cornerstone of CDMA research. The random element in the construction is particularly attractive as it provides robustness and flexibility in utilizing multiaccess channels, whilst not making significant sacrifices in terms of transmission power. Random codes are generated from some ensemble; here we consider the possibility of combining two standard paradigms, sparsely and densely spread codes, in a single composite code ensemble. The composite code analysis includes a replica symmetric calculation of performance in the large system limit, and investigation of finite systems through a composite belief propagation algorithm. A variety of codes are examined with a focus on the high multi-access interference regime. We demonstrate scenarios both in the large size limit and for finite systems in which the composite code has typical performance exceeding those of sparse and dense codes at equivalent signal to noise ratio.
Resumo:
The focus of our work is the verification of tight functional properties of numerical programs, such as showing that a floating-point implementation of Riemann integration computes a close approximation of the exact integral. Programmers and engineers writing such programs will benefit from verification tools that support an expressive specification language and that are highly automated. Our work provides a new method for verification of numerical software, supporting a substantially more expressive language for specifications than other publicly available automated tools. The additional expressivity in the specification language is provided by two constructs. First, the specification can feature inclusions between interval arithmetic expressions. Second, the integral operator from classical analysis can be used in the specifications, where the integration bounds can be arbitrary expressions over real variables. To support our claim of expressivity, we outline the verification of four example programs, including the integration example mentioned earlier. A key component of our method is an algorithm for proving numerical theorems. This algorithm is based on automatic polynomial approximation of non-linear real and real-interval functions defined by expressions. The PolyPaver tool is our implementation of the algorithm and its source code is publicly available. In this paper we report on experiments using PolyPaver that indicate that the additional expressivity does not come at a performance cost when comparing with other publicly available state-of-the-art provers. We also include a scalability study that explores the limits of PolyPaver in proving tight functional specifications of progressively larger randomly generated programs. © 2014 Springer International Publishing Switzerland.
Resumo:
The development of increasingly powerful computers, which has enabled the use of windowing software, has also opened the way for the computer study, via simulation, of very complex physical systems. In this study, the main issues related to the implementation of interactive simulations of complex systems are identified and discussed. Most existing simulators are closed in the sense that there is no access to the source code and, even if it were available, adaptation to interaction with other systems would require extensive code re-writing. This work aims to increase the flexibility of such software by developing a set of object-oriented simulation classes, which can be extended, by subclassing, at any level, i.e., at the problem domain, presentation or interaction levels. A strategy, which involves the use of an object-oriented framework, concurrent execution of several simulation modules, use of a networked windowing system and the re-use of existing software written in procedural languages, is proposed. A prototype tool which combines these techniques has been implemented and is presented. It allows the on-line definition of the configuration of the physical system and generates the appropriate graphical user interface. Simulation routines have been developed for the chemical recovery cycle of a paper pulp mill. The application, by creation of new classes, of the prototype to the interactive simulation of this physical system is described. Besides providing visual feedback, the resulting graphical user interface greatly simplifies the interaction with this set of simulation modules. This study shows that considerable benefits can be obtained by application of computer science concepts to the engineering domain, by helping domain experts to tailor interactive tools to suit their needs.
Resumo:
Most parametric software cost estimation models used today evolved in the late 70's and early 80's. At that time, the dominant software development techniques being used were the early 'structured methods'. Since then, several new systems development paradigms and methods have emerged, one being Jackson Systems Development (JSD). As current cost estimating methods do not take account of these developments, their non-universality means they cannot provide adequate estimates of effort and hence cost. In order to address these shortcomings two new estimation methods have been developed for JSD projects. One of these methods JSD-FPA, is a top-down estimating method, based on the existing MKII function point method. The other method, JSD-COCOMO, is a sizing technique which sizes a project, in terms of lines of code, from the process structure diagrams and thus provides an input to the traditional COCOMO method.The JSD-FPA method allows JSD projects in both the real-time and scientific application areas to be costed, as well as the commercial information systems applications to which FPA is usually applied. The method is based upon a three-dimensional view of a system specification as opposed to the largely data-oriented view traditionally used by FPA. The method uses counts of various attributes of a JSD specification to develop a metric which provides an indication of the size of the system to be developed. This size metric is then transformed into an estimate of effort by calculating past project productivity and utilising this figure to predict the effort and hence cost of a future project. The effort estimates produced were validated by comparing them against the effort figures for six actual projects.The JSD-COCOMO method uses counts of the levels in a process structure chart as the input to an empirically derived model which transforms them into an estimate of delivered source code instructions.
Resumo:
The article discusses the waste and source-matter analysis (WASAN) group workshop methodology designed to minimize the generation of avoidable hazardous waste. Several areas analyzed using WASAN are the behavior of a process, waste minimization inside that process, and the consequences for waste production from upstream and downstream processes falling outside of design. A group from the Enriched Uranium Residues Recovery Plant (EURRP) in Springfields, England used WASAN to analyze the generation of plastic bag waste.
Resumo:
Two-dimensional 'Mercedes Benz' (MB) or BN2D water model (Naim, 1971) is implemented in Molecular Dynamics. It is known that the MB model can capture abnormal properties of real water (high heat capacity, minima of pressure and isothermal compressibility, negative thermal expansion coefficient) (Silverstein et al., 1998). In this work formulas for calculating the thermodynamic, structural and dynamic properties in microcanonical (NVE) and isothermal-isobaric (NPT) ensembles for the model from Molecular Dynamics simulation are derived and verified against known Monte Carlo results. The convergence of the thermodynamic properties and the system's numerical stability are investigated. The results qualitatively reproduce the peculiarities of real water making the model a visually convenient tool that also requires less computational resources, thus allowing simulations of large (hydrodynamic scale) molecular systems. We provide the open source code written in C/C++ for the BN2D water model implementation using Molecular Dynamics.
Resumo:
Motivation: In molecular biology, molecular events describe observable alterations of biomolecules, such as binding of proteins or RNA production. These events might be responsible for drug reactions or development of certain diseases. As such, biomedical event extraction, the process of automatically detecting description of molecular interactions in research articles, attracted substantial research interest recently. Event trigger identification, detecting the words describing the event types, is a crucial and prerequisite step in the pipeline process of biomedical event extraction. Taking the event types as classes, event trigger identification can be viewed as a classification task. For each word in a sentence, a trained classifier predicts whether the word corresponds to an event type and which event type based on the context features. Therefore, a well-designed feature set with a good level of discrimination and generalization is crucial for the performance of event trigger identification. Results: In this article, we propose a novel framework for event trigger identification. In particular, we learn biomedical domain knowledge from a large text corpus built from Medline and embed it into word features using neural language modeling. The embedded features are then combined with the syntactic and semantic context features using the multiple kernel learning method. The combined feature set is used for training the event trigger classifier. Experimental results on the golden standard corpus show that >2.5% improvement on F-score is achieved by the proposed framework when compared with the state-of-the-art approach, demonstrating the effectiveness of the proposed framework. © 2014 The Author 2014. The source code for the proposed framework is freely available and can be downloaded at http://cse.seu.edu.cn/people/zhoudeyu/ETI_Sourcecode.zip.
Resumo:
GitHub is the most popular repository for open source code (Finley 2011). It has more than 3.5 million users, as the company declared in April 2013, and more than 10 million repositories, as of December 2013. It has a publicly accessible API and, since March 2012, it also publishes a stream of all the events occurring on public projects. Interactions among GitHub users are of a complex nature and take place in different forms. Developers create and fork repositories, push code, approve code pushed by others, bookmark their favorite projects and follow other developers to keep track of their activities. In this paper we present a characterization of GitHub, as both a social network and a collaborative platform. To the best of our knowledge, this is the first quantitative study about the interactions happening on GitHub. We analyze the logs from the service over 18 months (between March 11, 2012 and September 11, 2013), describing 183.54 million events and we obtain information about 2.19 million users and 5.68 million repositories, both growing linearly in time. We show that the distributions of the number of contributors per project, watchers per project and followers per user show a power-law-like shape. We analyze social ties and repository-mediated collaboration patterns, and we observe a remarkably low level of reciprocity of the social connections. We also measure the activity of each user in terms of authored events and we observe that very active users do not necessarily have a large number of followers. Finally, we provide a geographic characterization of the centers of activity and we investigate how distance influences collaboration.
Resumo:
This paper examines the source country determinants of FDI into Japan. The paper highlights certain methodological and theoretical weaknesses in the previous literature and offers some explanations for hitherto ambiguous results. Specifically, the paper highlights the importance of panel data analysis, and the identification of fixed effects in the analysis rather than simply pooling the data. Indeed, we argue that many of the results reported elsewhere are a feature of this mis-specification. To this end, pooled, fixed effects and random effects estimates are compared. The results suggest that FDI into Japan is inversely related to trade flows, such that trade and FDI are substitutes. Moreover, the results also suggest that FDI increases with home country political and economic stability. The paper also shows that previously reported results, regarding the importance of exchange rates, relative borrowing costs and labour costs in explaining FDI flows, are sensitive to the econometric specification and estimation approach. The paper also discusses the importance of these results within a policy context. In recent years Japan has sought to attract FDI, though many firms still complain of barriers to inward investment penetration in Japan. The results show that cultural and geographic distance are only of marginal importance in explaining FDI, and that the results are consistent with the market-seeking explanation of FDI. As such, the attitude to risk in the source country is strongly related to the size of FDI flows to Japan. © 2007 The Authors Journal compilation © 2007 Blackwell Publishing Ltd.
Resumo:
Distributed source analyses of half-field pattern onset visual evoked magnetic responses (VEMR) were carried out by the authors with a view to locating the source of the largest of the components, the CIIm. The analyses were performed using a series of realistic source spaces taking into account the anatomy of the visual cortex. Accuracy was enhanced by constraining the source distributions to lie within the visual cortex only. Further constraints on the source space yielded reliable, but possibly less meaningful, solutions.