2 resultados para Sorter

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background & Aims: In celiac disease (CD), transglutaminase type II (TG2) has 2 fundamental roles: (1) as the autoantigen recognized by highly specific autoantibodies and (2) the modifier of pathogenic gliadin T-cell epitopes. It follows that inhibition of TG2 might represent an attractive strategy to curb the toxic action of gliadin. Here we studied the validity of this strategy using the organ culture approach. Methods: Duodenal biopsy specimens from 30 treated patients with CD, 33 untreated patients with CD, and 24 controls were cultured with or without gliadin peptides p31-43, pα-9, and deamidated pα-9 for 20 minutes, 3 hours, and 24 hours. In 31 patients with CD and 16 controls, TG2 inhibitor R283 or anti-TG CUB 7402 or anti-surface TG2 (6B9) mAbs were used in cultures. T84 cells were also cultured with or without peptides with or without TG inhibitors. Mucosal modifications after culture were assessed by immunofluorescence, in situ detection of TG activity, confocal microscopy, and fluorescence-activated cell sorter analysis. Results: The enzymatic inhibition of TG2 only controlled gliadin-specific T-cell activation. The binding of surface TG2 contained gliadin-specific T-cell activation and p31-43-induced actin rearrangement, epithelial phosphorylation, and apoptosis, both in organ cultures and T84 cells. Conclusions: These data indicate a novel and unexpected biological role for surface TG2 in the pathogenesis of CD suggesting a third role for TG2 in CD. These results have a specific impact for celiac disease, with wider implications indicating a novel biologic function of TG2 with possible repercussions in other diseases. © 2005 by the American Gastroenterological Association.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background/Aims: Extracellular vesicles (EVs) are spherical fragments of cell membrane released from various cell types under physiological as well as pathological conditions. Based on their size and origin, EVs are classified as exosome, microvesicles (MVs) and apoptotic bodies. Recently, the release of MVs from human red blood cells (RBCs) under different conditions has been reported. MVs are released by outward budding and fission of the plasma membrane. However, the outward budding process itself, the release of MVs and the physical properties of these MVs have not been well investigated. The aim of this study is to investigate the formation process, isolation and characterization of MVs released from RBCs under conditions of stimulating Ca2+ uptake and activation of protein kinase C. Methods: Experiments were performed based on single cell fluorescence imaging, fluorescence activated cell sorter/flow cytometer (FACS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and dynamic light scattering (DLS). The released MVs were collected by differential centrifugation and characterized in both their size and zeta potential. Results: Treatment of RBCs with 4-bromo-A23187 (positive control), lysophosphatidic acid (LPA), or phorbol-12 myristate-13 acetate (PMA) in the presence of 2 mM extracellular Ca2+ led to an alteration of cell volume and cell morphology. In stimulated RBCs, exposure of phosphatidylserine (PS) and formation of MVs were observed by using annexin V-FITC. The shedding of MVs was also observed in the case of PMA treatment in the absence of Ca2+, especially under the transmitted bright field illumination. By using SEM, AFM and DLS the morphology and size of stimulated RBCs, MVs were characterized. The sizes of the two populations of MVs were 205.8 ± 51.4 nm and 125.6 ± 31.4 nm, respectively. Adhesion of stimulated RBCs and MVs was observed. The zeta potential of MVs was determined in the range from - 40 mV to - 10 mV depended on the solutions and buffers used. Conclusion: An increase of intracellular Ca2+ or an activation of protein kinase C leads to the formation and release of MVs in human RBCs.