6 resultados para Solvent-free

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reaction of activated aromatics containing phenols, naphthol, methoxynaphthalenes, anisole etc. with 1-butyl-3-methylimidazolium tribromide ([Bmim]Br-3) under solvent-free conditions, selectively gave the corresponding monobromination products with excellent yields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reaction of arylamines with 1-butyl-3-methylimidazolium tribromide ([bmim]Br3) under solvent-free conditions, gave selectively the corresponding monobromination products with excellent, yields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Matrix application continues to be a critical step in sample preparation for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI). Imaging of small molecules such as drugs and metabolites is particularly problematic because the commonly used washing steps to remove salts are usually omitted as they may also remove the analyte, and analyte spreading is more likely with conventional wet matrix application methods. We have developed a method which uses the application of matrix as a dry, finely divided powder, here referred to as dry matrix application, for the imaging of drug compounds. This appears to offer a complementary method to wet matrix application for the MALDI-MSI of small molecules, with the alternative matrix application techniques producing different ion profiles, and allows the visualization of compounds not observed using wet matrix application methods. We demonstrate its value in imaging clozapine from rat kidney and 4-bromophenyl-1,4-diazabicyclo(3.2.2)nonane-4-carboxylic acid from rat brain. In addition, exposure of the dry matrix coated sample to a saturated moist atmosphere appears to enhance the visualization of a different set of molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dry matrix application for matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) was used to profile the distribution of 4-bromophenyl-1,4-diazabicyclo(3.2.2)nonane-4-carboxylate, monohydrochloride (BDNC, SSR180711) in rat brain tissue sections. Matrix application involved applying layers of finely ground dry alpha-cyano-4-hydroxycinnamic acid (CHCA) to the surface of tissue sections thaw mounted onto MALDI targets. It was not possible to detect the drug when applying matrix in a standard aqueous-organic solvent solution. The drug was detected at higher concentrations in specific regions of the brain, particularly the white matter of the cerebellum. Pseudomultiple reaction monitoring imaging was used to validate that the observed distribution was the target compound. The semiquantitative data obtained from signal intensities in the imaging was confirmed by laser microdissection of specific regions of the brain directed by the imaging, followed by hydrophilic interaction chromatography in combination with a quantitative high-resolution mass spectrometry method. This study illustrates that a dry matrix coating is a valuable and complementary matrix application method for analysis of small polar drugs and metabolites that can be used for semiquantitative analysis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mass spectrometry imaging (MSI) is a powerful tool in metabolomics and proteomics for the spatial localization and identification of pharmaceuticals, metabolites, lipids, peptides and proteins in biological tissues. However, sample preparation remains a crucial variable in obtaining the most accurate distributions. Common washing steps used to remove salts, and solvent-based matrix application, allow analyte spreading to occur. Solvent-free matrix applications can reduce this risk, but increase the possibility of ionisation bias due to matrix adhesion to tissue sections. We report here the use of matrix-free MSI using laser desorption ionisation performed on a 12 T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. We used unprocessed tissue with no post-processing following thaw-mounting on matrix-assisted laser desorption ionisation (MALDI) indium-tin oxide (ITO) target plates. The identification and distribution of a range of phospholipids in mouse brain and kidney sections are presented and compared with previously published MALDI time-of-flight (TOF) MSI distributions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: Production of functionalised particles using dry powder coating is a one-step, environmentally friendly process that paves the way for the development of particles with targeted properties and diverse functionalities. Areas covered: Applying the first principles in physical science for powders, fine guest particles can be homogeneously dispersed over the surface of larger host particles to develop functionalised particles. Multiple functionalities can be modified including: flowability, dispersibility, fluidisation, homogeneity, content uniformity and dissolution profile. The current publication seeks to understand the fundamental underpinning principles and science governing dry coating process, evaluate key technologies developed to produce functionalised particles along with outlining their advantages, limitations and applications and discusses in detail the resultant functionalities and their applications. Expert opinion: Dry particle coating is a promising solvent-free manufacturing technology to produce particles with targeted functionalities. Progress within this area requires the development of continuous processing devices that can overcome challenges encountered with current technologies such as heat generation and particle attrition. Growth within this field requires extensive research to further understand the impact of process design and material properties on resultant functionalities.