18 resultados para Solution chemistry

em Aston University Research Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Blended Portland-blastfumace slag cements provide a suitable matrix for the encapsulation of low and intermediate level waste due to their inherantly low connective porosity and provide a highly alkaline and strongly reduced chemical environment. The hydration mechanism of these materials is complex and involves several competing chemical reactions. This thesis investigates three main areas: 1) The developing chemical shrinkage of the system shows that the underlying kinetics are dominantly linear and estimates of the activation energy of the slag made by this method and by conduction calorimetry show it to be c.53 kJ/mol. 2) Examination of the soUd phase reveals that caldum hydroxide is initially precipitated and subsequently consumed during hydration. The absolute rate of slag hydration is investigated by chemical and thermal methods and an estimation of the average silicate chain length (3 silicate units) by NMR is presented. 3) The developing pore solution chemistry shows that the system becomes rapidly alkaline (pH 13 - 13.5) and subsequently strongly reduced. Ion chromatography shows the presence of reduced sulphur species which are associated with the onset of reducing conditions. In the above studies, close control of the hydration temperature was maintained and the operation of a temperature controlled pore fluid extration press is reported.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several of OPC paste and concrete specimens, with different mix proportions, were cast against CPF and impermeable formwork (IF) and the profiles of pore structure, microhardness and scratch hardness of the cover zone were established. The chloride ingress and the depth of carbonation of the surface zone of concrete cast against CPF and IF were investigated. The main mechanisms controlling the ECR processes and the factors affecting such treatment were critically reviewed. Subsequently, as a means of restoring passivation of steel embedded in carbonated concrete, such HCP specimens were subjected to ECR. The influence of ECR on the chemistry of the pore solution and the microstructure of the surface and the steel/cement past interface zones were also studied. The main findings of this investigation were as follows: (a) The thickness of the microstructure gradient of cover concrete is significantly decreased with increasing period of water curing but is relatively unaffected by curing temperature, w/e ratio and the use of cement replacement materials. (b) The scratch hardness technique was shown to be potentially useful for characterising the microstructure and microhardness gradients of the surface zone. (c) A relationship between the microstructure gradient and mass transport properties of the surface zone was established. (d) The use of CPF resulted in a significant reduction in porosity of both the cement paste matrix and the aggregate/cement paste transition zone, and a marked improvement in the resistance of the surface zone to carbonation and the ingress of chloride ions. (e) The ECR treatment resulted in a marked densification of the pore structure and in changes to the pore solution chemistry and the cement phases of near-surface and steel/cement paste transition zones. This effect was more pronounced with current density, period of treatment and particularly with the use of sodium phosphate as an electrolyte.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of 10% and 20% replacement metakaolin on a number of aspects of hydration chemistry and service performance of ordinary Portland cement pastes has been investigated. The analysis of expressed pore solutions has revealed that metakaolin-blended specimen pastes possess enhanced chloride binding capacities and reduced pore solution pH values when compared with their unblended counterparts. The implications of the observed changes in pore solution chemistry with respect to chloride induced reinforcement corrosion and the reduction in expansion associated with the alkali aggregate reaction are discussed. Differential thermal analysis, mercury intrusion porosimetry, and nuclear magnetic resonance spectroscopy have been employed in the analysis of the solid phase. It is suggested that hydrated gehlenite (a product of pozzolanic reaction) is operative in the removal and solid state binding of chloride ions from the pore solution of metakaolin-blended pastes. Diffusion coefficients obtained in a non-steady state chloride ion diffusion investigation have indicated that cement pastes containing 10% and 20% replacement metakaolin exhibit superior resistance to the penetration of chloride ions in comparison with those of plain OPC of the same water:cement ratio. The chloride induced corrosion behaviour of cement paste samples, of water:cement ratio 0.4, containing 0% , 10%, and 20% replacement metakaolin, has been monitored using the linear polarization technique. No significant corrosion of embedded mild steel was observed over a 200 day period.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Four corrosion inhibitors namely sodium nitrite, sodium monofluorophosphate, ethanolamine and an alkanolamine-based mixture were studied by immersing mild steel bars for 42 days in model electrolytes of varied pH and chloride concentration which were intended to simulate the pore solution phase present within carbonated and/or chloride-contaminated concrete. Site trials were carried out on sodium monofluorophosphate and the alkanolamine-based inhibitor to study their depth of penetration into concrete. The influence of various carbonating atmospheres on the pore solution chemistry and microstructure of hydrated cement paste was investigated. Physical realkalisation of carbonated cement paste and a calcium nitrite-based corrosion rehabilitation system for chloride-contaminated cement paste were investigated by monitoring ionic transport within the pore solution phase of laboratory specimens. The main findings were as follows: 1,Sodium nitrite, sodium monofluorophosphate, ethanolamine and the alkanolamine-based mixture all behaved as passivating anodic inhibitors of steel corrosion in air-saturated aqueous solutions of varied pH and chloride concentration. 2,Sodium monofluorophosphate failed to penetrate significantly into partially carbonated site concrete when applied as recommended by the supplier. Phosphate and fluoride penetrated 5mm into partially carbonated site concrete treated with sodium monofluorophosphate. 3,The ethanolamine component of the alkanolamine-based inhibitor was found to have penetrated significant depths into partially carbonated site concrete. 4,Carbonating hydrated cement paste over saturated solutions of sodium nitrite resulted in significant concentrations of nitrite in the pore solution of the carbonated paste. Saturated solutions of sodium chloride, ammonium nitrate, magnesium nitrate and sodium dichromate were investigated and identified as alternatives for controlling the relative humidity of the carbonating environment. 5,Hardened carbonated cement paste can by physically realkalised to a limited extent due to the diffusion of hydroxyl ions under saturated conditions. A substantial proportion of the hydroxyl ions that diffused into the carbonated cement paste however, became bound into the cement matrix. Hydroxyl ion concentrations remained below 5mmol/l within the pore solution of the realkalised cement paste. 6, Nitrite ions penetrated significant distances by diffusion within the pore solution of saturated uncarbonated hydrated cement paste.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reduction in the useful-service life of reinforced concrete construction in the Arabian Gulf is attributed to reinforcement corrosion. While this phenomenon is primarily related to chloride ions, the concomitant pressure of sulfate salts may accelerate the deterioration process. Another factor which might influence reinforcement corrosion is the elevated ambient temperature. While few studies have been conducted to evaluate the individual effect of sulfate contamination and temperature on chloride binding and reinforcement corrosion, the synergistic effect of these factors on concrete durability, viz.-a-viz., reinforcement corrosion, needs to be evaluated. Further, the environmental conditions of the Arabian Gulf are also conducive for accelerated carbonation. However, no data are available on the concomitant effect of chloride-sulfate contamination and elevated temperature on the carbonation behaviour of plain and blended cements.This study was conducted to evaluate the conjoint effect of chloride-sulfate contamination and temperature on the pore solution chemistry and reinforcement corrosion. The effect of chloride-sulfate contamination and elevated temperature on carbonation in plain and blended cements was also investigated. Pore solution extraction and analysis, X-ray diffraction, differential thermal analysis, scanning electron microscopy, DC linear polarization resistance and AC impedance spectroscopy techniques were utilized to study the effect of experimental parameters on chloride binding, reinforcement corrosion and carbonation.The results indicated that the concomitant presence of chloride and sulfate salts and temperature significantly influences the durability performance of concrete by: (i) decreasing the chloride binding, (ii) increasing reinforcement corrosion, and (iii) accelerating the carbonation process. To avoid such deterioration, it is advisable to minimize both chloride and sulfate contamination contributed by the mixture ingredients. Due to the known harmful role of sulfate ions in decreasing the chloride binding and increasing reinforcement corrosion, limits on allowable sulfate contamination in concrete should also be established.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A study of several chemical and electrochemical factors which affect the behaviour of embedded steel in cement pastes and concrete has been made. The effects of internal and external sources of chloride ions on the pore solution chemistry of Portland cement pastes, with and without additions of anodic corrosion inhibitors, have been studied using a pore solution expression device which has enabled samples of pore solution to be expressed from hardened cement pastes and analysed for various ionic species. Samples of pure alite and tricalcium aluminate have been prepared and characterised with respect to morphology, free lime content and fineness. Kinetics of diffusion of chloride ions in hardened pastes of alite and alite blended with tricalcium aluminate have been investigated and an activation energy obtained for the diffusion process in alite. The pore structures of the hardened pastes and the chloride ion binding capacity of alite have also been determined. Concrete cylinders containing embedded steel with four different surface conditions were exposed to various environments. The electrochemical behaviour of the steel was monitored during the period of exposure by means of rest potential measurements and the steel corrosion products analysed before and after being embedded. An examination was made of the nature of the interfacial zones produced between the embedded steel and cement. Rest potential measurements were monitored for steel embedded in alite paste in the presence of chloride ions and cement paste containing various levels of inhibitors in combination with chloride ions. In the latter case the results were supported by polarisation resistance determinations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The solubility of telmisartan (form A) in nine organic solvents (chloroform, dichloromethane, ethanol, toluene, benzene, 2-propanol, ethyl acetate, methanol and acetone) was determined by a laser monitoring technique at temperatures from 277.85 to 338.35 K. The solubility of telmisartan (form A) in all of the nine solvents increased with temperature as did the rates at which the solubility increased except in chloroform and dichloromethane. The mole fraction solubility in chloroform is higher than that in dichloromethane, which are both one order of magnitude higher than those in the other seven solvents at the experimental temperatures. The solubility data were correlated with the modified Apelblat equation and λh equations. The results show that the λh equation is in better agreement with the experimental data than the Apelblat equation. The relative root mean square deviations (σ) of the λh equation are in the range from 0.004 to 0.45 %. The dissolution enthalpies, entropies and Gibbs energies of telmisartan in these solvents were estimated by the Van’t Hoff equation and the Gibbs equation. The melting point and the fusion enthalpy of telmisartan were determined by differential scanning calorimetry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zinc-air fuel cells (ZAFCs) present a promising energy source with a competing potential with the lithium-ion battery and even with proton-exchange membrane fuel cells (PEMFCs) for applications in next generation electrified transport and energy storage. The regeneration of zinc is essential for developing the next-generation, i.e., electrochemically rechargeable ZAFCs. This review aims to provide a comprehensive view on both theoretical and industrial platforms already built hitherto, with focus on electrode materials, electrode and electrolyte additives, solution chemistry, zinc deposition reaction mechanisms and kinetics, and electrochemical zinc regeneration systems. The related technological challenges and their possible solutions are described and discussed. A summary of important R&D patents published within the recent 10 years is also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use molecular dynamics simulations to compare the conformational structure and dynamics of a 21-base pair RNA sequence initially constructed according to the canonical A-RNA and A'-RNA forms in the presence of counterions and explicit water. Our study aims to add a dynamical perspective to the solid-state structural information that has been derived from X-ray data for these two characteristic forms of RNA. Analysis of the three main structural descriptors commonly used to differentiate between the two forms of RNA namely major groove width, inclination and the number of base pairs in a helical twist over a 30 ns simulation period reveals a flexible structure in aqueous solution with fluctuations in the values of these structural parameters encompassing the range between the two crystal forms and more. This provides evidence to suggest that the identification of distinct A-RNA and A'-RNA structures, while relevant in the crystalline form, may not be generally relevant in the context of RNA in the aqueous phase. The apparent structural flexibility observed in our simulations is likely to bear ramifications for the interactions of RNA with biological molecules (e.g. proteins) and non-biological molecules (e.g. non-viral gene delivery vectors). © CSIRO 2009.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of sodium cholate (NaC; concentration 1-16 mM), a biological surfactant, on the aggregation behavior of 1% (w/v, 2.2 × 10(-3) M) poly(N-isopropylacrylamide) (PNIPAM) aqueous solutions was studied as a function of temperature. From turbidity, dynamic light scattering, viscosity, and fluorescence measurements, it was observed that (i) there is NaC-induced nanoscale aggregation of PNIPAM in its sol state and (ii) the lower critical solution temperature corresponding to sol-gel transition shifts to a lower temperature by about 2 °C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2-(2-pyridyl)phenyl(p-ethoxyphenyl)tellurium(II), (RR1Te) reacts with HgC12 at room temperature to give white HgCl2.RR1Te. On setting aside, or on warming the reaction mixture a yellow material, [R1HgCl.(RTeCl)2] is formed. Multinuclear NMR(125Te, 199Hg, 1H) and mass spectroscopy confirm the formulation, and confirm the ease of transfer of the p-ethoxyphenyl group (R1) between the metal centres. The crystal structure of the yellow material consists of two discrete RTeCl molecules together with a R1HgCl molecule. There is no dative bond formation between these species, hence the preferred description of the formation of an inclusion complex. The reaction of RR1Te with Copper(I) chloride in the cold gives an air sensitive yellow product Cu3Cl3(RR1Te)2(0.5CH3CN); under reflux in air changes to the green Cu2Cl(RR1Te)(0.5 EtOH). By contrast, the reaction of RR1Te with acetonitrile solution of Copper(II) salts under mild conditions affords the white materials CuCl(RR1Te) and CuBr(RR1Te)H2O. RR1Te reacts with PdCl2 and PtCl2 to give materials albeit not well defined, can be seen as intermediates to the synthesis of inorganic phase of the type M3XTe2XCl2X. Paramagnetism is associated with some of the palladium and platinum products. The 195Pt NMR measurement in DMSO establishes the presence of six platinum species, which are assigned to Pt(IV), Pt(III) or Pt(II). The reactions show that in the presence of PdCl2 or PtCl2 both R and R1 are very labile. The reaction of RHgCl(R= 2-(2-pyridyl)phenyl) with SeX4(X= Cl, Br) gives compounds which suggest that both Trans-metallation and redox processes are involved. By varying reaction conditions materials which appear to be intermediates in the trans-metallation process are isolated. Potentially bidentate tellurium ligands having molecular formula RTe(CH2)nTeR,Ln, (R= Ph,(t-Bu). C6H4, n = 5,10) are prepared. Palladium and Platinum complexes containing these ligands are prepared. Also complex Ph3SnC1L(L = p-EtO.C6H4) is prepared.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new poly(ethylene oxide)-tetraphenylalanine polymer-peptide conjugate has been prepared via a “click” reaction between an alkyne-modified peptide and an azide-terminated PEO oligomer. Self-assembled nanotubes are formed after dialysis of a THF solution of this polymer-peptide conjugate against water. The structure of these nanotubes has been probed by circular dichroism, IR, TEM, and SAXS. From these data, it is apparent that self-assembly involves the formation of antiparallel ß-sheets and p-p-stacking. Nanotubes are formed at concentrations between 2 and 10 mg mL-1. Entanglement between adjacent nanotubes occurs at higher concentrations, resulting in the formation of soft hydrogels. Gel strength increases at higher polymer-peptide conjugate concentration, as expected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two series of poly(ethylene oxide)-tetrapeptide conjugates have been prepared using a “Click” reaction between an alkyne-modified tetra(phenylalanine) or tetra(valine) and various azide-terminated poly(ethylene oxide) (PEO) oligomers. Three different PEO precursors were used to prepare these conjugates, with number-average molecular weights of 350, 1200, and 1800 Da. Assembly of mPEO-F4-OEt and mPEO-V4-OEt conjugates was achieved by dialysis of a THF solution of the conjugate against water or by direct aqueous rehydration of a thin film. The PEO length has a profound effect on the outcome of the self-assembly, with the F4 conjugates giving rise to nanotubes, fibers, and wormlike micelles, respectively, as the length of the PEO block is increased. For the V4 series, the propensity to form ß-sheets dominates, and hence, the self-assembled structures are reminiscent of those formed by peptides alone, even at the longer PEO lengths. Thus, this systematic study demonstrates that the self-assembly of PEO-peptides depends on both the nature of the peptides and the relative PEO block length.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tbe formation of Pd(TeR)n and (CuTeR)n from the reaction between telluroesters and Pd(II)or Cu(II) suggested that these organa­tellurium reagents may be useful precursors of RTe- ligands in reactions with transition-metal substrates. Also the formation of telluronium salts Me2RTeI- from the reaction between telluroesters and methyl iodide, together with the above, confirm the cleavage of -cõ-Te bonds rather than -C-Te bonds. The formation of a carboxylic acid from the toluene solution of a ditelluride d palladium(O) complex in the presence of light oxygen (from air) is demonstrated. When the solvent employed is p-xylene an aldehyde is formed.The reaction proceeds via the free radical, RTeO, with Pd(PPh3)4 as a catalyst.It has also been shown that the oxidation of aldehydes to carboxylic acids is catalysed by ditelluride. Spin trapping experiments with PhCH=N(O)But (phenyl-t-butyl-nitrone) have provided evidence that the oxidative addition of an alkyl halide (RX=Mei, BunBr, BusecBr, ButBr, BrCH2-CH=CHCH2Br, and Br(CH2)4Br) to diphenyltelluride and reductive elimination of CH3SCN from Ph2(CH3)Te(NCS) proceeds via radical pathways. A mechanism is proposed for oxidative addition which involves the preformation of a charge transfer complex of alkyl halide and diphenyltelluride.The first step is the formation of a charge transfer complex, and the initial product of the oxidative addition is a "covalent" form of the tellurium(IV)compound. When the radical R is more stable, Ph2TeX2 may be the major tellurium(IV)product. The reaction of RTeNa (R=p-EtOC6H4, Ph) with organic dihalides X2(CH2)n (n=1,2,3,4) affords telluronium salts (n=3,4; X=Cl, Br) the nature of which is discussed.For n=l (X=Br, I)the products are formulated as charge transfer complexes of stoichiometry (RTe)2(CH2).CH2X2• For n=2, elimination of ditelluride occurs with the formation of an alkene. Some 125’Te Mõssbauer data are discussed and it is suggested that the unusually low value of 6 (7.58 mm.s-1 ) for  p-EtO.C6H4.Te)2(cH2)cH2Br2 relates to removal of 5's electronsfrom the spare pair orbltal via the charge transfer interaction. 125Te Mossbauer data for (p-EtO.C6H4)Te(CH2)4Br are typical of a tellurium (IV) compound and in particular ∇ is in the expected range for a telluronium salt. The product of the reaction of Na Te (C6H4.OEt), with 1,3-dibromopropane is, from the Mössbauer data, also a telluronium salt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A thorough investigation of the recommended colorimetric method for the determination of malathion (an organophosphorus pesticide) has led to the identification of the major cause of all the problems with which the method suffers. The method, which involves the extraction of the copper (II) complex or the hydrolysis product of malathion from aqueous solution into immiscible organic solvents, has many drawbacks. For example, the colour of the organic extract fades very quickly and a slight increase in the contact time of the hydrolysis product and the copper reagent within the aqueous solution, results in a decrease in the ab-solute absorbance. Also, the presence of any reducing agents can be a significant source of error. In the present work, it has been shown that the basic cause of all these problems is the ability of copper (II) ion to be reduced to copper (I) ion. It has further been shown that these problems can be resolved by re-placing copper (II) by bismuth (III). This has led to the development of a modified colorimetric method for the determination. of malathion, which has distinct advantages over all other existing methods in terms of reagents required, ease in application, avoidance of interferences and stability of colour for extended periods of time. The modified colorimetric method described above has been further improved by making use of a ligand exchange reaction involving dithizone. The resulting final organic extract in this case is bright orange in colour, the absorbance of which can be measured even with simple photometers. The usefulness of the modified colorimetric method has been demonstrated by determining malathion in technical products, and in aqueous solution containing the compound down to sub ppm levels. The scope and applicability of atomic absorption spectrophotometry has been extended by demonstrating for the first time that the technique can be used for the indirect determination of malathion. Almost all of the work described above has been accepted for publication by international journals and considerable interest in the work has been shown by chemists working in the field of pesticide analysis and research.