4 resultados para Soils, Radioactive substances in
em Aston University Research Archive
Resumo:
Humic substances are the major organic constituents of soils and sediments. They are heterogeneous, polyfunctional, polydisperse, macromolecular and have no accurately known chemical structure. Their interactions with radionuclides are particularly important since they provide leaching mechanisms from disposal sites. The central theme to this research is the interaction of heavy metal actinide analogues with humic materials. Studies described focus on selected aspects of the characteristics and properties of humic substances. Some novel approaches to experiments and data analysis are pursued. Several humic substances are studied; all but one are humic acids, and those used most extensively were obtained commercially. Some routine characterisation techniques are applied to samples in the first instance. Humic substances are coloured, but their ultra-violet and visible absorption spectra are featureless. Yet, they fluoresce over a wide range of wavelengths. Enhanced fluorescence in the presence of luminescent europium(III) ions is explained by energy transfer from irradiated humic acid to the metal ion in a photophysical model. Nuclear magnetic resonance spectroscopy is applied to the study of humic acids and their complexes with heavy metals. Proton and carbon-13 NMR provides some structural and functionality information; Paramagnetic lanthanide ions affect these spectra. Some heavy metals are studied as NMR nuclei, but measurements are restricted by their sensitivity. A humic acid is fractionated yielding a broad molecular weight distribution. Electrophoretic mobilities and particle radii determined by Laser Doppler Electrophoretic Light Scattering are sensitive to the conditions of the supporting media, and the concentration and particle size distribution of humic substances. In potentiometric titrations of humate dispersions, the organic matter responds slowly and the mineral acid addition is buffered. Proton concentration data is modelled and a mechanism is proposed involving two key stages, both resulting in proton release after some conformational changes.
Resumo:
This thesis examines the growth and awareness of health and safety at work between 1780 and 1900. In this period the hazards at work were increased by the intensification of production brought about by the Industrial Revolution, and new risks to health arose from the wider range of toxic substances in use by manufacturing industry. There is discussion in the thesis of the extent to which the problems were identified in an age of short life expectancy and limited medical knowledge. The sources studied have been largely medical, governmental, trade and press reports. The emphasis is on the first effects seen and recommendations made, and where possible, the extent of the problem and the effectiveness of any preventative measures adopted and examined. There is discussion of the growing involvement of the Government in industrial health and safety. The subject is viewed in the light of modern thinking on industrial health but uses a classification appropriate to historical resources. Psychological and minor afflictions, neglected in the 19th century, are not considered. The available literature is reviewed in each section. Three detailed case studies conclude the thesis, two on the notoriously dangerous occupations of metal grinding and pottery, and one on occupational eye injuries. Each study is based on a different type of source material. The thesis overall shows that there was extensive concern for health and safety at work, but no systematic approach and only ad hoc implementation of preventative measures; and that the rate at which conditions improved varied between different industries and different categories of workers . However, some modern principles of health and safety at work can be seen emerging, and the period laid the necessary medical, technical and legal foundations for developments in the present century.
Resumo:
This paper contributes a new methodology called Waste And Source-matter ANalyses (WASAN) which supports a group in building agreeable actions for safely minimising avoidable waste. WASAN integrates influences from the Operational Research (OR) methodologies/philosophies of Problem Structuring Methods, Systems Thinking, simulation modelling and sensitivity analysis as well as industry approaches of Waste Management Hierarchy, Hazard Operability (HAZOP) Studies and As Low As Reasonably Practicable (ALARP). The paper shows how these influences are compiled into facilitative structures that support managers in developing recommendations on how to reduce avoidable waste production. WASAN is being designed as Health and Safety Executive Guidance on what constitutes good decision making practice for the companies that manage nuclear sites. In this paper we report and reflect on its use in two soft OR/problem structuring workshops conducted on radioactive waste in the nuclear industry. Crown Copyright © 2010.