43 resultados para Software design process
em Aston University Research Archive
Resumo:
This thesis is a theoretical study of the accuracy and usability of models that attempt to represent the environmental control system of buildings in order to improve environmental design. These models have evolved from crude representations of a building and its environment through to an accurate representation of the dynamic characteristics of the environmental stimuli on buildings. Each generation of models has had its own particular influence on built form. This thesis analyses the theory, structure and data of such models in terms of their accuracy of simulation and therefore their validity in influencing built form. The models are also analysed in terms of their compatability with the design process and hence their ability to aid designers. The conclusions are that such models are unlikely to improve environmental performance since: a the models can only be applied to a limited number of building types, b they can only be applied to a restricted number of the characteristics of a design, c they can only be employed after many major environmental decisions have been made, d the data used in models is inadequate and unrepresentative, e models do not account for occupant interaction in environmental control. It is argued that further improvements in the accuracy of simulation of environmental control will not significantly improve environmental design. This is based on the premise that strategic environmental decisions are made at the conceptual stages of design whereas models influence the detailed stages of design. It is hypothesised that if models are to improve environmental design it must be through the analysis of building typologies which provides a method of feedback between models and the conceptual stages of design. Field studies are presented to describe a method by which typologies can be analysed and a theoretical framework is described which provides a basis for further research into the implications of the morphology of buildings on environmental design.
Resumo:
Theprocess of manufacturing system design frequently includes modeling, and usually, this means applying a technique such as discrete event simulation (DES). However, the computer tools currently available to apply this technique enable only a superficial representation of the people that operate within the systems. This is a serious limitation because the performance of people remains central to the competitiveness of many manufacturing enterprises. Therefore, this paper explores the use of probability density functions to represent the variation of worker activity times within DES models.
Resumo:
Software architecture plays an essential role in the high level description of a system design, where the structure and communication are emphasized. Despite its importance in the software engineering process, the lack of formal description and automated verification hinders the development of good software architecture models. In this paper, we present an approach to support the rigorous design and verification of software architecture models using the semantic web technology. We view software architecture models as ontology representations, where their structures and communication constraints are captured by the Web Ontology Language (OWL) and the Semantic Web Rule Language (SWRL). Specific configurations on the design are represented as concrete instances of the ontology, to which their structures and dynamic behaviors must conform. Furthermore, ontology reasoning tools can be applied to perform various automated verification on the design to ensure correctness, such as consistency checking, style recognition, and behavioral inference.
Resumo:
The objective of this research is to design and build a groupware system which will allow members of a distributed group more flexibility in performing software inspection. Software inspection, which is part of non-execution based testing in software development, is a group activity. The groupware system aims to provide a system that will improve acceptability of groupware and improve software quality by providing a software inspection tool that is flexible and adaptable. The groupware system provide a flexible structure for software inspection meetings. The groupware system will extend the structure of the software inspection meeting itself, allowing software inspection meetings to use all four quadrant of the space-time matrix: face-to-face, distributed synchronous, distributed asynchronous, and same place-different time. This will open up new working possibilities. The flexibility and adaptability of the system allows work to switch rapidly between synchronous and asynchronous interaction. A model for a flexible groupware system was developed. The model was developed based on review of the literature and questionnaires. A prototype based on the model was built using java and WWW technology. To test the effectiveness of the system, an evaluation was conducted. Questionnaires was used to gather response from the users. The evaluations ascertained that the model developed is flexible and adaptable to the different working modes, and the system is capable of supporting several different models of the software inspection process.
Resumo:
The concept of an Expert System (ES) has been acknowledged as a very useful tool, but few studies have been carried out in its application to the design of cold rolled sections. This study involves primarily the use of an ES as a tool to improve the design process and to capture the draughtsman's knowledge. Its main purpose is to reduce substantially the time taken to produce a section drawing, thereby facilitating a speedy feedback to the customer. In order to communicate with a draughtsman, it is necessary to use sketches, symbolic representations and numerical data. This increases the complexity of programming an ES, as it is necessary to use a combination of languages so that decisions, calculations, graphical drawings and control of the system can be effected. A production system approach is used and a further step has been taken by introducing an Activator which is an autoexecute operation set up by the ES to operate an external program automatically. To speed up the absorption of new knowledge into the knowledge base, a new Learning System has been constructed. In addition to developing the ES, other software has been written to assist the design process. The section properties software has been introduced to improve the speed and consistency of calculating the section properties. A method of selecting or comparing the most appropriate section for a given specification is also implemented. Simple loading facilities have been introduced to guide the designer as to the loading capacity of the section. This research has concluded that the application of an ES is beneficial and with the activator approach, automated designing can be achieved. On average a complex drawing can be displayed on the screen in about 100 seconds, where over 95% of the initial section design time for repetitive or similar profile can be saved.
Resumo:
Cold roll forming is an extremely important but little studied sheet metal forming process. In this thesis, the process of cold roll forming is introduced and it is seen that form roll design is central to the cold roll forming process. The conventional design and manufacture of form rolls is discussed and it is observed that surrounding the design process are a number of activities which although peripheral are time consuming and a possible source of error. A CAD/CAM system is described which alleviates many of the problems traditional to form roll design. New techniques for the calculation of strip length and controlling the means of forming bends are detailed. The CAD/CAM system's advantages and limitations are discussed and, whilst the system has numerous significant advantages, its principal limitation can be said to be the need to manufacture form rolls and test them on a mill before a design can be stated satisfactory. A survey of the previous theoretical and experimental analysis of cold roll forming is presented and is found to be limited. By considering the previous work, a method of numerical analysis of the cold roll forming process is proposed based on a minimum energy approach. Parallel to the numerical analysis, a comprehensive range of software has been developed to enhance the designer's visualisation of the effects of his form roll design. A complementary approach to the analysis of form roll design is the generation of form roll design, a method for the partial generation of designs is described. It is suggested that the two approaches should continue in parallel and that the limitation of each approach is knowledge of the cold roll forming process. Hence, an initial experimental investigation of the rolling of channel sections is described. Finally, areas of potential future work are discussed.
Resumo:
Product design decisions can have a significant impact on the financial and operation performance of manufacturing companies. Therefore good analysis of the financial impact of design decisions is required if the profitability of the business is to be maximised. The product design process can be viewed as a chain of decisions which links decisions about the concept to decisions about the detail. The idea of decision chains can be extended to include the design and operation of the 'downstream' business processes which manufacture and support the product. These chains of decisions are not independent but are interrelated in a complex manner. To deal with the interdependencies requires a modelling approach which represents all the chains of decisions, to a level of detail not normally considered in the analysis of product design. The operational, control and financial elements of a manufacturing business constitute a dynamic system. These elements interact with each other and with external elements (i.e. customers and suppliers). Analysing the chain of decisions for such an environment requires the application of simulation techniques, not just to any one area of interest, but to the whole business i.e. an enterprise simulation. To investigate the capability and viability of enterprise simulation an experimental 'Whole Business Simulation' system has been developed. This system combines specialist simulation elements and standard operational applications software packages, to create a model that incorporates all the key elements of a manufacturing business, including its customers and suppliers. By means of a series of experiments, the performance of this system was compared with a range of existing analysis tools (i.e. DFX, capacity calculation, shop floor simulator, and business planner driven by a shop floor simulator).
Resumo:
Manufacturing firms are driven by competitive pressures to continually improve the effectiveness and efficiency of their organisations. For this reason, manufacturing engineers often implement changes to existing processes, or design new production facilities, with the expectation of making further gains in manufacturing system performance. This thesis relates to how the likely outcome of this type of decision should be predicted prior to its implementation. The thesis argues that since manufacturing systems must also interact with many other parts of an organisation, the expected performance improvements can often be significantly hampered by constraints that arise elsewhere in the business. As a result, decision-makers should attempt to predict just how well a proposed design will perform when these other factors, or 'support departments', are taken into consideration. However, the thesis also demonstrates that, in practice, where quantitative analysis is used to evaluate design decisions, the analysis model invariably ignores the potential impact of support functions on a system's overall performance. A more comprehensive modelling approach is therefore required. A study of how various business functions interact establishes that to properly represent the kind of delays that give rise to support department constraints, a model should actually portray the dynamic and stochastic behaviour of entities in both the manufacturing and non-manufacturing aspects of a business. This implies that computer simulation be used to model design decisions but current simulation software does not provide a sufficient range of functionality to enable the behaviour of all of these entities to be represented in this way. The main objective of the research has therefore been the development of a new simulator that will overcome limitations of existing software and so enable decision-makers to conduct a more holistic evaluation of design decisions. It is argued that the application of object-oriented techniques offers a potentially better way of fulfilling both the functional and ease-of-use issues relating to development of the new simulator. An object-oriented analysis and design of the system, called WBS/Office, are therefore presented that extends to modelling a firm's administrative and other support activities in the context of the manufacturing system design process. A particularly novel feature of the design is the ability for decision-makers to model how a firm's specific information and document processing requirements might hamper shop-floor performance. The simulator is primarily intended for modelling make-to-order batch manufacturing systems and the thesis presents example models created using a working version of WBS/Office that demonstrate the feasibility of using the system to analyse manufacturing system designs in this way.
Resumo:
As a new medium for questionnaire delivery, the internet has the potential to revolutionise the survey process. Online (web-based) questionnaires provide several advantages over traditional survey methods in terms of cost, speed, appearance, flexibility, functionality, and usability [1, 2]. For instance, delivery is faster, responses are received more quickly, and data collection can be automated or accelerated [1- 3]. Online-questionnaires can also provide many capabilities not found in traditional paper-based questionnaires: they can include pop-up instructions and error messages; they can incorporate links; and it is possible to encode difficult skip patterns making such patterns virtually invisible to respondents. Like many new technologies, however, online-questionnaires face criticism despite their advantages. Typically, such criticisms focus on the vulnerability of online-questionnaires to the four standard survey error types: namely, coverage, non-response, sampling, and measurement errors. Although, like all survey errors, coverage error (“the result of not allowing all members of the survey population to have an equal or nonzero chance of being sampled for participation in a survey” [2, pg. 9]) also affects traditional survey methods, it is currently exacerbated in online-questionnaires as a result of the digital divide. That said, many developed countries have reported substantial increases in computer and internet access and/or are targeting this as part of their immediate infrastructural development [4, 5]. Indicating that familiarity with information technologies is increasing, these trends suggest that coverage error will rapidly diminish to an acceptable level (for the developed world at least) in the near future, and in so doing, positively reinforce the advantages of online-questionnaire delivery. The second error type – the non-response error – occurs when individuals fail to respond to the invitation to participate in a survey or abandon a questionnaire before it is completed. Given today’s societal trend towards self-administration [2] the former is inevitable, irrespective of delivery mechanism. Conversely, non-response as a consequence of questionnaire abandonment can be relatively easily addressed. Unlike traditional questionnaires, the delivery mechanism for online-questionnaires makes estimation of questionnaire length and time required for completion difficult1, thus increasing the likelihood of abandonment. By incorporating a range of features into the design of an online questionnaire, it is possible to facilitate such estimation – and indeed, to provide respondents with context sensitive assistance during the response process – and thereby reduce abandonment while eliciting feelings of accomplishment [6]. For online-questionnaires, sampling error (“the result of attempting to survey only some, and not all, of the units in the survey population” [2, pg. 9]) can arise when all but a small portion of the anticipated respondent set is alienated (and so fails to respond) as a result of, for example, disregard for varying connection speeds, bandwidth limitations, browser configurations, monitors, hardware, and user requirements during the questionnaire design process. Similarly, measurement errors (“the result of poor question wording or questions being presented in such a way that inaccurate or uninterpretable answers are obtained” [2, pg. 11]) will lead to respondents becoming confused and frustrated. Sampling, measurement, and non-response errors are likely to occur when an online-questionnaire is poorly designed. Individuals will answer questions incorrectly, abandon questionnaires, and may ultimately refuse to participate in future surveys; thus, the benefit of online questionnaire delivery will not be fully realized. To prevent errors of this kind2, and their consequences, it is extremely important that practical, comprehensive guidelines exist for the design of online questionnaires. Many design guidelines exist for paper-based questionnaire design (e.g. [7-14]); the same is not true for the design of online questionnaires [2, 15, 16]. The research presented in this paper is a first attempt to address this discrepancy. Section 2 describes the derivation of a comprehensive set of guidelines for the design of online-questionnaires and briefly (given space restrictions) outlines the essence of the guidelines themselves. Although online-questionnaires reduce traditional delivery costs (e.g. paper, mail out, and data entry), set up costs can be high given the need to either adopt and acquire training in questionnaire development software or secure the services of a web developer. Neither approach, however, guarantees a good questionnaire (often because the person designing the questionnaire lacks relevant knowledge in questionnaire design). Drawing on existing software evaluation techniques [17, 18], we assessed the extent to which current questionnaire development applications support our guidelines; Section 3 describes the framework used for the evaluation, and Section 4 discusses our findings. Finally, Section 5 concludes with a discussion of further work.
Resumo:
Many software engineers have found that it is difficult to understand, incorporate and use different formal models consistently in the process of software developments, especially for large and complex software systems. This is mainly due to the complex mathematical nature of the formal methods and the lack of tool support. It is highly desirable to have software models and their related software artefacts systematically connected and used collaboratively, rather than in isolation. The success of the Semantic Web, as the next generation of Web technology, can have profound impact on the environment for formal software development. It allows both the software engineers and machines to understand the content of formal models and supports more effective software design in terms of understanding, sharing and reusing in a distributed manner. To realise the full potential of the Semantic Web in formal software development, effectively creating proper semantic metadata for formal software models and their related software artefacts is crucial. This paper proposed a framework that allows users to interconnect the knowledge about formal software models and other related documents using the semantic technology. We first propose a methodology with tool support is proposed to automatically derive ontological metadata from formal software models and semantically describe them. We then develop a Semantic Web environment for representing and sharing formal Z/OZ models. A method with prototype tool is presented to enhance semantic query to software models and other artefacts. © 2014.
Resumo:
Purpose: This study explores the use of a hybrid ERP system, combining an ERP system with enterprise social software (ESS). The study will provide a critical assessment of the implementation of this process technology. Design/methodology/approach: Multiple case studies of organisations based in China were conducted to understand the use of ERP systems in different contexts. Following an evaluation of the context of each ERP implementation (within-case analysis) the research draws a cross-case conclusion that defines the nature of a hybrid ERP system and then synthesises the propositions related to the benefits and challenges of implementation. Findings We find that a hybrid ERP system is able to support efficiency in business process management and also provide a flexible response to changes in business requirements. It does this by allowing for the continued use of informal processes that cannot be incorporated into the ERP system. Practical implications: This research indicates how ERP systems in conjunction with ESS can provide a flexible response to changing business requirements and increase collaboration within the organisation. Key lessons include the need to perform informal activities under the guidance of managers and provide clear boundaries for the implementation of informal activities. Originality/Value: This study has found that the use of case studies can provide a valuable insight into the use of a hybrid ERP system from the perspective of its use within the organisation as a work system that requires an assessment of the context within which organisational members perform their work
Resumo:
Some organizations end up reimplementing the same class of business process over and over: an "administrative process", which consists of managing a form through several states and involving various roles in the organization. This results in wasted time that could be dedicated to better understanding the process or dealing with the fine details that are specific to the process. Existing virtual office solutions require specific training and infrastructure andmay result in vendor lock-in. In this paper, we propose using a high-level domain-specific language (AdminDSL) to describe the administrative process and a separate code generator targeting a standard web framework. We have implemented the approach using Xtext, EGL and the Django web framework, and we illustrate it through two case studies: a synthetic examination process which illustrates the architecture of the generated code, and a real-world workplace survey process that identified several future avenues for improvement.
Resumo:
Block copolymers are versatile designer macromolecules where a “bottom-up” approach can be used to create tailored materials with unique properties. These simple building blocks allow us to create actuators that convert energy from a variety of sources (such as chemical, electrical and heat) into mechanical energy. In this review we will discuss the advantages and potential pitfalls of using block copolymers to create actuators, putting emphasis on the ways in which these materials can be synthesised and processed. Particular attention will be given to the theoretical background of microphase separation and how the phase diagram can be used during the design process of actuators. Different types of actuation will be discussed throughout.
Resumo:
The rapid developments in computer technology have resulted in a widespread use of discrete event dynamic systems (DEDSs). This type of system is complex because it exhibits properties such as concurrency, conflict and non-determinism. It is therefore important to model and analyse such systems before implementation to ensure safe, deadlock free and optimal operation. This thesis investigates current modelling techniques and describes Petri net theory in more detail. It reviews top down, bottom up and hybrid Petri net synthesis techniques that are used to model large systems and introduces on object oriented methodology to enable modelling of larger and more complex systems. Designs obtained by this methodology are modular, easy to understand and allow re-use of designs. Control is the next logical step in the design process. This thesis reviews recent developments in control DEDSs and investigates the use of Petri nets in the design of supervisory controllers. The scheduling of exclusive use of resources is investigated and an efficient Petri net based scheduling algorithm is designed and a re-configurable controller is proposed. To enable the analysis and control of large and complex DEDSs, an object oriented C++ software tool kit was developed and used to implement a Petri net analysis tool, Petri net scheduling and control algorithms. Finally, the methodology was applied to two industrial DEDSs: a prototype can sorting machine developed by Eurotherm Controls Ltd., and a semiconductor testing plant belonging to SGS Thomson Microelectronics Ltd.