12 resultados para Small-error approximation

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is generally assumed when using Bayesian inference methods for neural networks that the input data contains no noise or corruption. For real-world (errors in variable) problems this is clearly an unsafe assumption. This paper presents a Bayesian neural network framework which allows for input noise given that some model of the noise process exists. In the limit where this noise process is small and symmetric it is shown, using the Laplace approximation, that there is an additional term to the usual Bayesian error bar which depends on the variance of the input noise process. Further, by treating the true (noiseless) input as a hidden variable and sampling this jointly with the network's weights, using Markov Chain Monte Carlo methods, it is demonstrated that it is possible to infer the unbiassed regression over the noiseless input.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An exact solution to a family of parity check error-correcting codes is provided by mapping the problem onto a Husimi cactus. The solution obtained in the thermodynamic limit recovers the replica-symmetric theory results and provides a very good approximation to finite systems of moderate size. The probability propagation decoding algorithm emerges naturally from the analysis. A phase transition between decoding success and failure phases is found to coincide with an information-theoretic upper bound. The method is employed to compare Gallager and MN codes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyse Gallager codes by employing a simple mean-field approximation that distorts the model geometry and preserves important interactions between sites. The method naturally recovers the probability propagation decoding algorithm as a minimization of a proper free-energy. We find a thermodynamical phase transition that coincides with information theoretical upper-bounds and explain the practical code performance in terms of the free-energy landscape.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is generally assumed when using Bayesian inference methods for neural networks that the input data contains no noise. For real-world (errors in variable) problems this is clearly an unsafe assumption. This paper presents a Bayesian neural network framework which accounts for input noise provided that a model of the noise process exists. In the limit where the noise process is small and symmetric it is shown, using the Laplace approximation, that this method adds an extra term to the usual Bayesian error bar which depends on the variance of the input noise process. Further, by treating the true (noiseless) input as a hidden variable, and sampling this jointly with the network’s weights, using a Markov chain Monte Carlo method, it is demonstrated that it is possible to infer the regression over the noiseless input. This leads to the possibility of training an accurate model of a system using less accurate, or more uncertain, data. This is demonstrated on both the, synthetic, noisy sine wave problem and a real problem of inferring the forward model for a satellite radar backscatter system used to predict sea surface wind vectors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regression problems are concerned with predicting the values of one or more continuous quantities, given the values of a number of input variables. For virtually every application of regression, however, it is also important to have an indication of the uncertainty in the predictions. Such uncertainties are expressed in terms of the error bars, which specify the standard deviation of the distribution of predictions about the mean. Accurate estimate of error bars is of practical importance especially when safety and reliability is an issue. The Bayesian view of regression leads naturally to two contributions to the error bars. The first arises from the intrinsic noise on the target data, while the second comes from the uncertainty in the values of the model parameters which manifests itself in the finite width of the posterior distribution over the space of these parameters. The Hessian matrix which involves the second derivatives of the error function with respect to the weights is needed for implementing the Bayesian formalism in general and estimating the error bars in particular. A study of different methods for evaluating this matrix is given with special emphasis on the outer product approximation method. The contribution of the uncertainty in model parameters to the error bars is a finite data size effect, which becomes negligible as the number of data points in the training set increases. A study of this contribution is given in relation to the distribution of data in input space. It is shown that the addition of data points to the training set can only reduce the local magnitude of the error bars or leave it unchanged. Using the asymptotic limit of an infinite data set, it is shown that the error bars have an approximate relation to the density of data in input space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurements of the sea surface obtained by satellite borne radar altimetry are irregularly spaced and contaminated with various modelling and correction errors. The largest source of uncertainty for low Earth orbiting satellites such as ERS-1 and Geosat may be attributed to orbital modelling errors. The empirical correction of such errors is investigated by examination of single and dual satellite crossovers, with a view to identifying the extent of any signal aliasing: either by removal of long wavelength ocean signals or introduction of additional error signals. From these studies, it was concluded that sinusoidal approximation of the dominant one cycle per revolution orbit error over arc lengths of 11,500 km did not remove a significant mesoscale ocean signal. The use of TOPEX/Poseidon dual crossovers with ERS-1 was shown to substantially improve the radial accuracy of ERS-1, except for some absorption of small TOPEX/Poseidon errors. The extraction of marine geoid information is of great interest to the oceanographic community and was the subject of the second half of this thesis. Firstly through determination of regional mean sea surfaces using Geosat data, it was demonstrated that a dataset with 70cm orbit error contamination could produce a marine geoid map which compares to better than 12cm with an accurate regional high resolution gravimetric geoid. This study was then developed into Optimal Fourier Transform Interpolation, a technique capable of analysing complete altimeter datasets for the determination of consistent global high resolution geoid maps. This method exploits the regular nature of ascending and descending data subsets thus making possible the application of fast Fourier transform algorithms. Quantitative assessment of this method was limited by the lack of global ground truth gravity data, but qualitative results indicate good signal recovery from a single 35-day cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study is to develop econometric models to better understand the economic factors affecting inbound tourist flows from each of six origin countries that contribute to Hong Kong’s international tourism demand. To this end, we test alternative cointegration and error correction approaches to examine the economic determinants of tourist flows to Hong Kong, and to produce accurate econometric forecasts of inbound tourism demand. Our empirical findings show that permanent income is the most significant determinant of tourism demand in all models. The variables of own price, weighted substitute prices, trade volume, the share price index (as an indicator of changes in wealth in origin countries), and a dummy variable representing the Beijing incident (1989) are also found to be important determinants for some origin countries. The average long-run income and own price elasticity was measured at 2.66 and – 1.02, respectively. It was hypothesised that permanent income is a better explanatory variable of long-haul tourism demand than current income. A novel approach (grid search process) has been used to empirically derive the weights to be attached to the lagged income variable for estimating permanent income. The results indicate that permanent income, estimated with empirically determined relatively small weighting factors, was capable of producing better results than the current income variable in explaining long-haul tourism demand. This finding suggests that the use of current income in previous empirical tourism demand studies may have produced inaccurate results. The share price index, as a measure of wealth, was also found to be significant in two models. Studies of tourism demand rarely include wealth as an explanatory forecasting long-haul tourism demand. However, finding a satisfactory proxy for wealth common to different countries is problematic. This study indicates with the ECM (Error Correction Models) based on the Engle-Granger (1987) approach produce more accurate forecasts than ECM based on Pesaran and Shin (1998) and Johansen (1988, 1991, 1995) approaches for all of the long-haul markets and Japan. Overall, ECM produce better forecasts than the OLS, ARIMA and NAÏVE models, indicating the superiority of the application of a cointegration approach for tourism demand forecasting. The results show that permanent income is the most important explanatory variable for tourism demand from all countries but there are substantial variations between countries with the long-run elasticity ranging between 1.1 for the U.S. and 5.3 for U.K. Price is the next most important variable with the long-run elasticities ranging between -0.8 for Japan and -1.3 for Germany and short-run elasticities ranging between – 0.14 for Germany and -0.7 for Taiwan. The fastest growing market is Mainland China. The findings have implications for policies and strategies on investment, marketing promotion and pricing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate an application of the method of fundamental solutions (MFS) to the one-dimensional parabolic inverse Cauchy–Stefan problem, where boundary data and the initial condition are to be determined from the Cauchy data prescribed on a given moving interface. In [B.T. Johansson, D. Lesnic, and T. Reeve, A method of fundamental solutions for the one-dimensional inverse Stefan Problem, Appl. Math Model. 35 (2011), pp. 4367–4378], the inverse Stefan problem was considered, where only the boundary data is to be reconstructed on the fixed boundary. We extend the MFS proposed in Johansson et al. (2011) and show that the initial condition can also be simultaneously recovered, i.e. the MFS is appropriate for the inverse Cauchy-Stefan problem. Theoretical properties of the method, as well as numerical investigations, are included, showing that accurate results can be efficiently obtained with small computational cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We find the probability distribution of the fluctuating parameters of a soliton propagating through a medium with additive noise. Our method is a modification of the instanton formalism (method of optimal fluctuation) based on a saddle-point approximation in the path integral. We first solve consistently a fundamental problem of soliton propagation within the framework of noisy nonlinear Schrödinger equation. We then consider model modifications due to in-line (filtering, amplitude and phase modulation) control. It is examined how control elements change the error probability in optical soliton transmission. Even though a weak noise is considered, we are interested here in probabilities of error-causing large fluctuations which are beyond perturbation theory. We describe in detail a new phenomenon of soliton collapse that occurs under the combined action of noise, filtering and amplitude modulation. © 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose. Whereas many previous studies have identified the association between sustained near work and myopia, few have assessed the influence of concomitant levels of cognitive effort. This study investigates the effect of cognitive effort on near-work induced transient myopia (NITM). Methods. Subjects comprised of six early onset myopes (EOM; mean age 23.7 yrs; mean onset 10.8 yrs), six late-onset myopes (LOM; mean age 23.2 yrs; mean onset 20.0 yrs) and six emmetropes (EMM; mean age 23.8 yrs). Dynamic, monocular, ocular accommodation was measured with the Shin-Nippon SRW-5000 autorefractor. Subjects engaged passively or actively in a 5 minute arithmetic sum checking task presented monocularly on an LCD monitor via a Badal optical system. In all conditions the task was initially located at near (4.50 D) and immediately following the task instantaneously changed to far (0.00 D) for a further 5 minutes. The combinations of active (A) and passive (P) cognition were randomly allocated as P:P; A:P; A:A; P:A. Results. For the initial near task, LOMs were shown to have a significantly less accurate accommodative response than either EOMs or EMMs (p < 0.001). For the far task, post hoc analyses for refraction identified EOMs as demonstrating significant NITM compared to LOMs (p < 0.05), who in turn showed greater NITM than EMMs (p < 0.001). The data show that for EOMs the level of cognitive activity operating during the near and far tasks determines the persistence of NITM; persistence being maximal when active cognition at near is followed by passive cognition at far. Conclusions. Compared with EMMs, EOMs and LOMs are particularly susceptible to NITM such that sustained near vision reduces subsequent accommodative accuracy for far vision. It is speculated that the marked NITM found in EOM may be a consequence of the crystalline lens thinning shown to be a developmental feature of EOM. Whereas the role of small amounts of retinal defocus in myopigenesis remains equivocal, the results show that account needs to be taken of cognitive demand in assessing phenomena such as NITM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large-scale mechanical products, such as aircraft and rockets, consist of large numbers of small components, which introduce additional difficulty for assembly accuracy and error estimation. Planar surfaces as key product characteristics are usually utilised for positioning small components in the assembly process. This paper focuses on assembly accuracy analysis of small components with planar surfaces in large-scale volume products. To evaluate the accuracy of the assembly system, an error propagation model for measurement error and fixture error is proposed, based on the assumption that all errors are normally distributed. In this model, the general coordinate vector is adopted to represent the position of the components. The error transmission functions are simplified into a linear model, and the coordinates of the reference points are composed by theoretical value and random error. The installation of a Head-Up Display is taken as an example to analyse the assembly error of small components based on the propagation model. The result shows that the final coordination accuracy is mainly determined by measurement error of the planar surface in small components. To reduce the uncertainty of the plane measurement, an evaluation index of measurement strategy is presented. This index reflects the distribution of the sampling point set and can be calculated by an inertia moment matrix. Finally, a practical application is introduced for validating the evaluation index.